

DANTULURI NARAYANA RAJU COLLEGE

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202. (Accredited at 'B⁺⁺, level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

M.Sc. CHEMISTRY

SEMESTER-I

COURSE: CHE-101-GENERAL CHEMISTRY-I

СО	COURSE OUTCOMES	LEVEL
CO1	Understand the limitations of classical mechanics at molecular	L2
	length scales.	
CO2	Understand the differences between the classical and quantum	L2
	mechanics.	
CO3	Understand the basic principles and concepts of quantum	L2
	mechanics.	
CO4	Apply the principles of quantum mechanics to simple model	L3
	systems relevance within chemistry.	
CO5	Undersand the bases behind interaction between light and matter	L2
	and account for the most common spectroscopic methods and their	
	possibilities and limitations for studies of molecules in the	
	MW,IR,and UV_Visible areas.	

COURSE: CHE: 102: INORGANIC CHEMISTRY-I

CO	COURSE OUTCOMES	LEVEL
CO1	Predict the geometries of various simple molecules using VSEPR,	L5
	VBT and MO theories.	
CO2	Explain the various aspects of inorganic chains, rings, cages.	L2
CO3	Describe about the splitting of d- orbitals in various geometries.	L2
CO4	Estimate the spectral properties of complex compounds and predict	L5
	the colour, magnetic properties of the complex compounds.	
CO5	Interpret the electronic spectra of complex compounds and explain	L2
	Orgel and Tanabe sugano diagrams	

COURSE: CHE: 103: ORGANIC CHEMISTRY-I

СО	COURSE OUTCOMES	LEVEL
CO1	Understand everything about reaction intermediates involved in	L2
	organic reactions.	
CO2	Understand about aromatic, non-aromatic and anti-aromatic	L2
	compounds.	
CO3	Understand concepts of stereo chemistry and will be able to stereo	L2
	chemical aspects in organic chemistry.	
CO4	Classify nomenclature, structure, properties, syntheses, and	L2
	reactions of the simple 3 to 7- member ring heterocyclic	
CO5	Understand the chemistry of the benzene ring fused ring	L2
	heterocyclic.	

COURSE -104- PHYSICAL CHEMISTRY-I

CO	COURSE OUTCOMES	LEVEL
CO1	Understand everything about reaction intermediates involved in	L2
	organic reactions.	
CO2	Understand about aromatic, non-aromatic and anti-aromatic	L2
	compounds.	
CO3	Understand concepts of stereo chemistry and will be able to stereo	L2
	chemical aspects in organic chemistry.	
CO4	Classify nomenclature, structure, properties, syntheses, and	L2
	reactions of the simple 3 to 7- member ring heterocyclic	
CO5	Understand the chemistry of the benzene ring fused ring	L2
	heterocyclic.	

COURSE: CHE: 105: INORGANIC CHEMISTRY LAB -I

CO	COURSE OUTCOMES	LEVEL
CO1	Analyze anions and cations present in a compound	L4
CO2	Divide interfering anions	L4
CO3	Analyze the principles involved in the preparations of complex	L4
	compounds	
CO4	prepare the solutions	L3

(Accredited at 'B⁺⁺' level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

COURSE: CHE: 106: ORGANIC CHEMISTRY LAB-I

CO	COURSE OUTCOMES	LEVEL
C01	Develop the skills like preparation of solutions crystallization techniques	L6
CO2	Explain the techniques like Acetylation Benzylation Nitration	L2
CO3	Apply theoretical knowledge in various steps of compound preparation	L3
CO4	Identify purity of compounds	L2

COURSE: CHE -107: PHYSICAL CHEMISTRY LAB-I

CO	COURSE OUTCOMES	LEVEL
CO1	Estimate of HCL and CH3COOH with standard NaOH by using	L2
	conductivity meter	
CO2	Discriminate cell constant and dissociation constant of weak acid	L4
CO3	Estimate the CST of phenol-water systemand study of the effect of	L2
	impurity on miscibility temperature	
CO4	Evaluate the cell constant	L5

SEMESTER-II

COURSE: 201-GENERAL CHEMISTRY-II

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the structure of an atom, radial and angular probability	L2
	distributions and shapes of atomic orbitals.	
CO2	Understand the symmetry operations of any small and medium sized	L2
	molecule and apply point group theory to the study of	
	electrical, optical and magnetic properties an selection rules for	
	absorption.	
CO3	Apply the conceptual understanding of the statistical parameters to	L3
	the analytical data.	
CO4	Apply elementary programs in Fortran for performing scientific	L3
	calculations	
CO5	Understand the structure of an atom, radial and angular probability	L2
	distributions and shapes of atomic orbitals.	

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

COURSE: CHE: 202: INORGANIC CHEMISTRY-II

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the basic concepts of structure and bonding of metal	L2
	clusters.	
CO2	Explain the Preparation, structure and bonding of organo metallic	L2
	compounds.	
CO3	Estimate the methods of stability of metal complexes and bio-	L5
	inorganic chemistry.	
CO4	Differentiate types of reaction mechanisms of metal complexes and	L2
	electron transfer reactions	
CO5	Understand the basic concepts of structure and bonding of metal	L2
	clusters.	

COURSE: CHE: 203: ORGANIC CHEMISTRY-II

СО	COURSE OUTCOMES	LEVEL
CO1	Understand the types and mechanisms of elimination reactions in	L2
	organic chemistry.	
CO2	Understand the concepts of Aromatic substitution reactions ie	L2
	Electophilic, nucleophilic, radical	
CO3	Predict insights into aliphatic nucleophilic substitution reactions	L5
CO4	Identify and predict the mechanism of Name reactions	L2
CO5	Estimate knowledge about spectroscopic techniques UV, IR, NMR	L5
	& Mass	

COURSE: 204-PHYSICAL CHEMISTRY-II

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the fundamental principle of magnetic resonance through theory and implement them to simple examples.	L2
CO2	Analyze the fundamental principles of statistical thermodynamics , their application for obtaining absolute values for thermodynamic parameters using partition functions	L4
CO3	Evaluate the equations representing electrochemical cell	L5
CO4	Calculate the electrochemical cell parameters and certain thermodynamic parameters using EMF data.	L3
CO5	Apply the voltametry, polarization experimental technique	L3

COURSE: CHE: 205: INORGANIC CHEMISTRY LAB-II

CO	COURSE OUTCOMES	LEVEL
CO1	Demonistrate the determination of some metal ions by using classical metals of analysis like volumetric and gravemetric methods	L3
CO2	Prepare and stnadardise the solutions and indicators and buffer solutions	L3
CO3	Estimation of quantity of some metal ions the presense of other metal ions	L5

COURSE: CHE: 206: ORGANIC CHEMISTRY LAB-II

CO	COURSE OUTCOMES	LEVEL
CO1	Separation of two compounds into individual compounds by	L4
	adopting solubility method	
CO2	Identification and conformation of functionl group(s) present in each	L2
	of compounds	
CO3	Preparation of one solid derivative for the conformation of each of	L3
	the functional group(s)	

COURSE: 207- PHYSICAL CHEMISTRY LAB-II

СО	COURSE OUTCOMES	LEVEL
CO1	Estimate the mixture of strong acid and weak acid vs atrong base by using conductometry	L2
CO2	Estimate the strong acid strong base PH-Metry	L2
CO3	Demonistrate the determination of Fe^{+2} VS $K_2Cr_2O_7$	L2

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER-III

COURSE: OCHE – 301 ORGANICREACTION MECHANISM AND PERICYCLIC REACTIONS

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the concept stereochemistry and its importance.	L2
CO2	Understand the aliphatic substitution.	L2
CO3	Apply the various types of aliphatic nucleophilic substitution.	L3
CO4	Understand the aromatic substitution reaction.	L2
CO5	Understanding the activation of chemical reactions .Thermal and photochemical methods,molecular orbitals of c onjugated polyenes and their symmetry properties definition and classification of pericyclic reactions methods of analyzing pericyclic reactions	L2

COURSE: OCHE - 302 - ORGANIC SPECTROSCOPY - I

CO	COURSE OUTCOMES	LEVEL
CO1	Understand about the principle and applications of ultraviolet and Woodward Fisher Rule.	L2
CO2	Understand the Infrared spectroscopy in organic structure Determination.	L2
CO3	Discuss about the Nuclear magnetic resonance spectroscopy.Proton chemical shift, Spin – Spin coupling, coupling constants and applications to organic structures 1H and 13C resonance spectroscopy.	L2
CO4	Understand the Mass spectroscopy and its applications	L2

COURSE: OCHE- 303 - MODERN ORGANIC SYNTHESIS - I

СО	COURSE OUTCOMES	LEVEL
CO1	Identify methods to construct C-C and C=C bonds.	L2
CO2	Understand HLF, Barton and reactions of organic hypohalites for	L2
	reactions at unactivated CH bonds and organo boranes.	
CO3	Understand various methods to protection of alcohols, 1, 2diols,	L2
	carbonyl compounds, carboxylic acids and amines.	
CO4	Discuss PTC catalyst and crown ethers.	L2

COURSE: OCHE- 304- CHEMISTRY OF NATURAL PRODUCTS-I

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the isolation and structural determination of alkaloids	L2
CO2	Apply the stereo chemistry of alkaloids	L2
CO3	Understand the isolation and structural determination of flavanoids &	L2
	iso –flavanoids	
CO4	Identify the isoprene rule	L2
CO5	Understand the terpenoids and its classification	L2

COURSE: OCHE305 (MULTISTEP SYNTHESIS OF ORGANIC COMPOUNDS)

СО	COURSE OUTCOMES	LEVEL
CO1	Illustrate the use of organic reagents and may involve purification of	L3
	the products by chromatographic techniques.	
CO2	Prepare the rearrangements of Beckmann and Benzilic acid.	L6
CO3	Preparation of the compounds like P-Bromo aniline, Tribromo	L6
	Benzene,2,4,6-trimethylquinoline,Flavone and 2-Phenylindole.	

COURSE: OCHE – 306 – ESTIMATIONS AND CHROMOTOGRAPHY

CO	COURSE OUTCOMES	LEVEL
CO1	Use glass apparatus carefully	L3
CO2	Estimate the organic compounds like Glucose,	L2
	phenol, Aniline, Aspirin, Acetone, Ibuprofen and Paracetamol	
CO3	Distinguish between ortho nitro Aniline and para nitro aniline by	L4
	using column chromatography	
CO4	Calculate the normalities for organic compounds and their	L3
	molecular weight	

DANTULURI NARAYANA RAJU COLLEGE

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER-III

COURSE: ACHE- 301: SEPARATION METHODS-I

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the separation of compounds by chromatographic	L2
	techniques.	
CO2	Explain instrumentation, separation & identification by Column	L2
	chromatography, Gel exclusion chromatography & Electrophoresis	
	techniques.	
CO3	Explain theory, instrumentation of Gas chromatography & GC-MS	L2
	& Inorganic molecular sieves.	
CO4	Explain theory & instrumentation of HPLC & LC-MS.	L2
CO5	Understand applications of various chromatographic techniques for	L2
	organic, inorganic& natural products	

COURSE: ACHE-302: QUALITY CONTROL & TRADITIONAL METHODS OF ANALYSIS-I

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the quality control & quality assurance, ISO series, GLP,	L2
	ICH guidelines.	
CO2	Understand the decomposition and dissolution of samples	L2
CO3	Understand & practice about analytical chemistry of some selected	L2
	oxidant systems.	
CO4	Estimate the organic functional group analysis	L2

COURSE: ACHE-303: APPLIED ANALYSIS-I

COURSE OUTCOMES	LEVEL
Analyze the different types of Ores to examine constituents.	L4
Analyze the different finished products like soaps, oils and paints.	L4
Understand the finished products like cement, fireclay, blast furnace	L2
slag, dolomite and limestone.	
Explain the assessment of water quality.	L2
	Analyze the different types of Ores to examine constituents. Analyze the different finished products like soaps , oils and paints. Understand the finished products like cement, fireclay, blast furnace

COURSE: ACHE- 304: INSTRUMENTAL METHODS OF ANALYSIS-I

CO	COURSE OUTCOMES	LEVEL
CO1	Explain the theoretical principles and instrumentation of UV	L2
COL	spectroscopy and spectroflourimetry	1.0
CO2	Understand the theory and instrumentation of IR and Raman Spectroscopy.	L2
CO3	Explain theory and instrumentation of NMR and ESR spectroscopy.	L2
CO4	Understand principle and instrumentation of Mass and X-RF spectroscopy.	L2
CO5	Understand applications of various instrumental methods	L2

COURSE: ACHE- 305: CLASSICAL METHODS OF ANALYSIS-I

СО	COURSE OUTCOMES	LEVEL
CO1	Predict the total hardness, chloride and DO of water samples	L5
CO2	Estimate the Calcium and Magnesium using complexometric	L2
	titrations	
CO3	Estimate Ammonia and Phosphate from fertilizers	L2
CO4	Analyze the Iron ore sample	L4
CO5	Analyze the moisture content, volatile matter, fixed carbon and ash	L4
	content of coal sample.	

COURSE: ACHE- 306: INSTRUMENTAL METHODS OF ANALYSIS-I

CO	COURSE OUTCOMES	LEVEL
CO1	Estimate the purty of commercial HCl and H2SO4 using PH metric	L2
	titrations	
CO2	Estimate the Cr (VI),Fe(II),Ce(IV) and V(V) using potentiometric	L2
	end point	
CO3	Estimate the Iron, Phophate and Mn(II) using spectrophotometry	L2
CO4	Estimation of sodium and potassium in given samples	L2
CO5	Predict the Rf values and identification of Organic compounds in a	L4
	given mixture by TLC.	

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER-IV

COURSE: OCHE- 401-ORGANIC REACTION MECHANISM AND ORGANIC PHOTO CHEMISTRY

CO	COURSE OUTCOMES	LEVEL
CO1	Understand nucleophiic aromatic substitution reaction.	L2
CO2	Understand Neighbouring group participation in aliphatic	L2
	electrophilic substitution.	
CO3	Understand Photochemistry of Carbonyl compounds.	L2
CO4	Understand photo chemistry of olefins, Aromatic compounds.	L2
CO5	Understand Norrish type –I, Norrish type –II, reactions, Paterno-	L2
	Buchi reactions	

COURSE: OCHE – 402 – ORGANIC SPECTROSCOPY – I

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the basic concepts of conformational analysis of cyclic	L2
	systems and applications of Optical Rotatory Dispersion.	
CO2	Understand the basic principles of 13C- spectroscopy and to apply	L2
	for structural elucidation	
CO3	Understand the methods of characterizing compounds by 2D NMR	L2
	techniques	
CO4	apply these spectroscopic techniques for the determination of	L2
	structure of organic molecules.	
CO5	Understandthe various methods of separations like thin layer	L2
	chromatography, High performance thin layer chromatography, Gas-	
	liquid Chromatography and columns packing	

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

COURSE: OCHE -403- MODERN ORGANIC SYNTHESES- II

CO	COURSE OUTCOMES	LEVEL
CO1	Identify organosilanes for the formation of various organic	L2
	compounds.	
CO2	Discuss on linear and convergent synthesis in retrosynthesis to	L2
	identify the reverse path for the synthesis of target molecule.	
CO3	Illustrates different oxidizing agents for oxidation of alkanes,	L3
	alkenes, alcohols and carbonyl compounds.	
CO4	Discuss various oxidizing agents such as KMnO4, OsO4, HIO4,	L3
	Lead tetra acetate, CrO3 and SeO3 to identify proper method to	
	oxidize a particular functional group.	
CO5	Dicuss different reducing methods for formation of desired	L3
	functional groups	

COURSE: OCHE – 404: BIO- ORGANIC CHEMISTRY-II

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the complexity of biological reactions in a living	L2
	organisms	
CO2	Apply the DNA structure, transfer of genetic information from one generation to another generation.	L3
CO3	Analyze various pathways like ATP, role of various enzymes, role of Amino acids and proteins	L4
CO4	Explain the role of vitamins, advantage and disadvantages in a living organism	L2
CO5	Understand the metabolic process in all living organism	L2

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

COURSE: OCHE405 (CHROMATOGRAPHIC SEPARATION AND ISOLATION & IDENTIFICATION OF NATURAL PRODUCTS)

CO	COURSE OUTCOMES	LEVEL
CO1	Identify the purity of given sample by using thin layer	L2
	chromatography	
CO2	Identification of unknown organic compounds by comparing the Rf	L2
	values of known standards	
CO3	Isolation and identification of different drugs from natural products	L2

COURSE: OCHE – 406- SPECTRAL IDENTIFICATION OF ORGANIC COMPOUNDS

CO	COURSE OUTCOMES	LEVEL
CO1	Discuss about UV spectra to know absorption maximum value	L2
	weather the compound is saturated (or) unsaturated transition	
CO2	Discuss about IR spectra to know the functional group	L2
CO3	Discuss about PMR and CMR spectra to know about proton and	L2
	carbon environment	
CO4	Discuss about Mass spectra to know about their molecular weight	L2
	and molecular formula	

COURSE: OCHE – 407- PROJECT

CO	COURSE OUTCOMES	LEVEL
CO1	Demonstrating the ability to design, execute and analyze	L2
	experiments independently or as part of a team	
CO2	Developing the capacity to evaluate scientific literature, identify gaps	L5
	in knowledge and propose innovative research questions	
CO3	Effectively presenting research findings through written reports, oral	L2
	presentation and possibly publications in scientific journals	
CO4	Addressing challenges encountered during research, adapting	L3
	experimental protocols and troubleshooting equipment or	
	experimental setups	

(Accredited at 'B⁺⁺' level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER-IV

COURSE: ACHE-401: SEPARATION METHODS-II

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the theoretical & practical concepts of paper & thin layer	L2
	chromatography.	
CO2	Explain theory, instrumentation of ion exchange & ion exchange	L2
	chromatography & ion chromatography.	
CO3	Understand the theory of sampling of solids, liquids & gases.	L2
CO4	Understand the principle, classification of separation methods using	L2
	solvent extraction.	
CO5	Understand the importance of analytical chemistry to industrial	L2
	research.	

COURSE: ACHE- 402: TRADITIONAL METHODS OF ANALYSIS-II

CO	COURSE OUTCOMES	LEVEL
CO1	Explain co-precipitation, post precipitation and precipitation	L2
	titrations.	
CO2	Understand the concepts of precipitation from Homogeneous	L2
	solution (PFHS) and Electrogravimetry	
CO3	Understand & practice about analytical chemistry of some selected	L2
	reductant systems.	
CO4	Analyze the different types of drugs.	L4

COURSE: ACHE-403: APPLIED ANALYSIS-II

СО	COURSE OUTCOMES	LEVEL
CO1	Analyze the ferrous and non ferrous alloys.	L4
CO2	Understand the analysis of soil, fertilizers and fuels.	L2
CO3	Describe the different pollutants and their estimations in air quality.	L2
CO4	Explain the kinetic methods of analysis and non aqueous titrimetry	L2

COURSE: ACHE- 404: INSTRUMENTAL METHODS OF ANALYSIS-II

CO	COURSE OUTCOMES	LEVEL
CO1	Explain the theoretical principles and instrumentation of Flame	L2
	photometer, Atomic absorption spectroscopy, ICP-AES and ICP-MS	
CO2	Understand the theory and instrumentation of Thermogravimetry	L2
	Differential thermal analysis and differential scanning colorimetry.	
CO3	Explain theory and instrumentation of DME stripping voltammetry	L2
	and coulometry.	
CO4	Understand the determination of ions using different ion selective	L2
	electrodes and radio chemical methods.	
CO5	Understand applications of various instrumental methods for organic,	L2
	inorganic and natural products.	

COURSE: ACHE- 405: CLASSICAL METHODS OF ANALYSIS-II

CO	COURSE OUTCOMES	LEVEL
CO1	Predict the alkalinity, COD and BOD of water samples	L2
CO2	Estimate the Iron using redox titrations	L5
CO3	Estimate Nitrate and Sulfur from fertilizers	L5
CO4	Evaluate the saponification value, acid value of oil samples	L5
CO5	Separate and determination of ions by ion exchanger resins	L4

COURSE: ACHE- 406: INSTRUMENTAL METHODS OF ANALYSIS-II

CO	COURSE OUTCOMES	LEVEL
CO1	Estimate the purity of commercial H_3PO_4 and CH_3COOH using P^H	L2
	metric titrations	
CO2	Estimate the Mn(VII),Fe(II),and V(V) using potentiometric end point	L2
CO3	Estimate the Nitrate and Ntrite using spectrophotometry	L2
CO4	Estimation of Lithium and Calcium in given samples	L2
CO5	Predict the Organic compounds in a given mixture by TLC.	L4

(Accredited at 'B⁺⁺' level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

COURSE: ACHE – 407- PROJECT

CO	COURSE OUTCOMES	LEVEL
CO1	Demonstrating the ability to design, execute and analyze	L2
	experiments independently or as part of a team	
CO2	Developing the capacity to evaluate scientific literature, identify gaps	L5
	in knowledge and propose innovative research questions	
CO3	Effectively presenting research findings through written reports, oral	L2
	presentation and possibly publications in scientific journals	
CO4	Addressing challenges encountered during research, adapting	L3
	experimental protocols and troubleshooting equipment or	
	experimental setups	