

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

M.Sc. MATHEMATICS

SEMESTER -I

Course: M101 – ALGEBRA – I

Code	COURSE OUTCOME	Level
CO1	Understand the concept of Normal subgroups, Quotient groups and	L2
	solvable groups	
CO2	Analyze counting principle and Sylow's theorems and apply them	L4
	for describing structures of finite groups.	
CO3	Demonstrate the knowledge of Rings, ideals of Rings and Quotient	L3
	rings, Field of Quotients of an integral domain	
CO4	Explain Ideals and Homomorphism, Principal Ideal domain and	L4
	Euclidean domains.	
CO5	Discuss basic properties of field extensions.	L2
CO6	Explain the concept of Polynomial Rings over UFD	L4

Course: M102 – REAL ANALYSIS – I

Code	COURSE OUTCOME	Level
CO1	Understand the basic topological properties of subsets of the real	L2
	numbers.	
CO2	Demonstrate the convergence of sequences and series which	L3
	involves studying different types of convergence (pointwise,	
	uniform, absolute, etc.) and understanding their implications.	
CO3	Analize the limit of a sequence, series and the Cauchy criterion and	L4
	Test the convergence of the series using the root and ratio test.	
CO4	Distinguish between continuity and uniform continuity and prove	L2
	the theorems on continuous functions.	
CO5	Discuss the key theorems such as the Intermediate Value Theorem	L2
	and the Mean Value Theorem.	
CO6	Explain the concepts of L-Hospital's rule and Taylor's theorem.	L4

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202.

(Accredited at 'B⁺⁺, level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

Course M103 – DIFFERENTIAL EQUATIONS

Code	COURSE OUTCOME	Level
CO1	Classify different types of ordinary differential equations and solve	L4
	them by various analytical methods	
CO2	Explain the concepts of existence and uniqueness of solutions of differential equations and analyze the conditions under which	L4
CO3	solutions exist and unique. Apply differential equations to model and solve problems from various fields.	L3
CO4	Apply various power series methods to obtain series solutions of differential Equations.	L3
CO5	Explore the methods of solutions of Boundary value problems.	L4
CO6	Use various methods of approximation to get qualitative information about the general behavior of the solutions of various problems	L3

Course: M104 – TOPOLOGY

Code	COURSE OUTCOME	Level
CO1	Explain fundamental concepts such as metric spaces as well as	L4
	topological spaces, continuity, convergence, compactness and connectedness	
CO2	Demonstrate various types of topological spaces, including metric spaces, Hausdorff spaces, and compact spaces.	L3
CO3	Analyze and prove properties of continuous functions between topological spaces	L4
CO4	Understand the structures induced by topological spaces, such as open and closed sets, neighborhoods and basis of a topology.	L2
CO5	Discuss key topological properties like separability, metrizability, and compactification	L2
CO6	Apply topological concepts and techniques to solve problems in various branches of mathematics such as analysis, algebra, and geometry.	L3

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

Course M105 – DISCRETE MATHEMATICS

Code	COURSE OUTCOME	Level
CO1	Understand the notion of a set, types of relations, and their	L2
	representations by graphs and matrices with the ability of to cote	
	illustrations in algebraic and ordered structures.	
CO2	Convert algebraic lattices into partially ordered sets and vice –	L2
	versa, and view lattices differently using Hassi diagrams for	
	foundations to Boolean algebra	
CO3	Interpret the Boolean expressions in shorter form using implicants	L3
	by applying different procedures and solve problems.	
CO4	Illustrate Boolean functions by Gatting Networks which is useful in	L3
	computer science for minimization process and solve problems	
CO5	Apply Quine – Mcclusky method and Karnaugh diagram to obtain	L3
	disjunctive normal form and conjunctive normal form of a Boolean	
	Expression and solve problems	
CO6	Assess logical and mathematical logic conclusions in day-to-day	L5
	life situations in this AI driven world	

SEMESTER II Course: M201 – ALGEBRA – II

Code	COURSE OUTCOME	Level
CO1	Understand the concept of Rings of fractions, Algebraic Extensions	L2
	of Fields and Eisenstein Criterion.	
CO2	Explain splitting fields, multiple roots, Normal and Separable	L4
	Extensions.	
CO3	Discuss about Fundamental Theorem of Galois Theory.	L2
CO4	Apply of Galois Theory in various problems	L3
CO5	Understand the concept of Roots of unity and Cyclotomic	L2
	polynomials	
CO6	Discuss about Solvable Polynomials by Radicals, Ruler and	L2
	Compass Construction.	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

Course: M202 - REAL ANALYSIS - II

Code	COURSE OUTCOME	Level
CO1	Understand the concept of Riemann – Stieltjes Integral,	L2
	fundamental Theorem of Calculus and rectifiable curves.	
CO2	Develop a thorough understanding of Riemann integration as a limit	L6
	of Riemann sums, including the formal definition and properties of	
	Riemann – Stieltje's integrals.	
CO3	Discuss about Uniform Convergence and Continuity, Uniform	L2
	Convergence and Integration, Uniform convergence and	
	Differentiation	
CO4	Explain the concept of Power series, the contraction principle and	L4
	the inverse function theorem	
CO5	Express the Implicit function theorem, Rank Theorem, Derivatives	L2
	of higher order and Differentiation of Integrals.	
CO6	Develop advanced problem-solving skills in the context of Riemann	L6
	integration, including solving challenging integrals and applying	
	integration techniques to solve mathematical and physical	
	problems.	

Course M203 - COMPLEX ANALYSIS - I

Code	COURSE OUTCOME	Level
CO1	Understand the elementary properties with examples of Analytic	L2
	functions.	
CO2	Explain the concept of complex functions, including continuity and	L4
	differentiability	
CO3	Analize the concept of Power series representation of analytic	L4
	functions and zeros of analytic functions.	
CO4	SummarizeCauchy's theorem and it's consequences, such as	L5
	Cauchy's integral formula and Cauchy's residue theorem	
CO5	Discuss about the homotopic version of Cauchy's theorem and the	L2
	open mapping theorem.	
CO6	Demonstrate the classification of Singularities, the Maximum	L3
	principle.	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202.

(Accredited at 'B⁺⁺' level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

Course M204 – LINEAR ALGEBRA

Code	COURSE OUTCOME	Level
CO1	Understand the concepts of characteristic values, characteristic	L2
	vectors, characteristic polynomials and Cauchy – Hamilton theorem	
	to use in the study of Invariance aspect in linear spaces of finite	
	dimension and find them	
CO2	Explain diagonalization linear operator on finite dimensional linear	L4
	space and describe the Diagonalisation process to solve problems	
CO3	Summarize the decomposition of a linear operator on a finite	L5
	dimensional vector space over the field using minimal polynomials,	
	direct sum and invariant subspaces and decompose linear operators.	
CO4	Describe the procedure for Jordan form of a matrix and find all	L2
	possible Jordan forms for a given matrix.	
CO5	Discuss Bilinear form, Quadratic form, the relationship between	L2
	them and solve problems	
CO6	Understand degenerate and non-degenerate bilinear forms and show	L2
	groups preserving bilinear forms	

Course M205 – PROBABILITY THEORY AND STATISTICS

Code	COURSE OUTCOME	Level
CO1	Understand some theorems on Probability, Conditional probability,	L2
	Independent events, Pair-wise Independent Events, Baye's theorem	
CO2	Discuss about Distribution function, Discrete and continuous	L2
	Random variables, Properties of Expectation, variance, Covariance,	
	Moment Generating Function, Characteristic function.	
CO3	Apply Probability distributions like Binomial, Poisson, normal, and	L3
	Uniform and their properties in daily life situations	
CO4	Explain quantitative measures for the relationship between two	L4
	variables(Correlation).	
CO5	Summarize appropriate mathematical or statistical form of the	L5
	relationship between two variables (regression).	
CO6	Estimate using Statistical inference techniques such as hypothesis	L5
	testing (Large sampling).	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER III

Course M301 – FUNCTIONAL ANALYSIS

Code	COURSE OUTCOME	Level
CO1	Understand fundamental concepts such as normed linear space,	L2
	Banach space and Hilbert Spaces. Construct new Banach spaces	
	from the given Banach Space namely quotient spaces and convert	
	the requirement of continuity into several more useful equivalent	
	forms	
CO2	Apply the result "If B and B' are Banach Spaces, and if T is a	L3
	continuous linear transformation of B onto B', then the image of	
	each open sphere centered on the origin in B contains an open	
	sphere centered on the origin in B' in open mapping theorem	
CO3	Apply closed graph theorem in many interesting problems in	L3
	analysis.	
CO4	Discuss the Gram - Schmidt orthogonalization process and applying	L2
	it to sequences of certain simple functions, several important	
	orthonormal sets in analysis.	
CO5	Describe a technique of dissecting a given operator into easily	L2
	studyable objects called projections.	
CO6	Analyze and solve problems involving linear operators and spectral	L4
	theory in finite dimensional Hilbert Space H	

Course: M302 – LEBESGUE THEORY

Code	COURSE OUTCOME	Level
CO1	Understand aboutmeasurable sets, non-measurable set, Lebesgue	L2
	measure and Lebesgue integration, including properties and	
	applications	
CO2	Apply Littlewoods three principles in Egoroff's theorem etc	L3
CO3	Analyzing functions in terms of measurability and integrability	L4
CO4	Apply theorems such as monotone convergence theorem,	L3
	dominated convergence theorem, Fatou's lemma	
CO5	Explore topics like Lebesgue differentiation theorem, absolute	L4
	continuity, and L^{P} spaces	
CO6	Solve problems involving convergence almost everywhere and	L3
	convergence in measure	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺, level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

Course M303 – ANALYTICAL NUMBER THEORY

Code	COURSE OUTCOME	Level
CO1	Understand properties of Mobius functions, Euler totient function	L2
	and also determine the Dirichlet product of arithmetical functions.	
CO2	Apply the Euler summation formula in asymptotic equalities and	L3
	also todetermine the partial sums of dirichlet product.	
CO3	Explain prime number theorem and Shapiro's Tauberian theorem	L4
	with their Applications.	
CO4	Summarize the Euler- Fermat theorem, Lagrange's theorem and	L4
	Chinese remainder theorem.	
CO5	Understand the concept of Congruence, Residue classes and	L2
	Complete Residue classes.	
CO6	Discuss about the concept of Big O notation, Mangoldt function,	L2
	divisor function.	

Course: M304 – PARTIAL DIFFERENTIAL EQUATIONS

Code	COURSE OUTCOME	Level
CO1	Understand definitions of partial differential equations (PDEs) and	L2
	differentiate them from ordinary differential equations (ODEs).	
CO2	Understand the classification of Partial Differential Equations (e.g.,	L2
	linear vs. nonlinear, first-order vs. higher-order) and their	
	significance in various fields such as Physics, Engineering, and	
	Mathematics.	
CO3	Show the basic concepts of partial differential equations.	L3
CO4	Explain linear Partial Differential equations with different methods.	L4
CO5	Classify partial differential equations and transform into canonical	L4
	form	
CO6	Solve boundary value problems of Laplace's equation.	L3

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202.

(Accredited at 'B⁺⁺, level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

Course M305 – LATTICE THEORY

Code	COURSE OUTCOME	Level
CO1	Understand the basic concepts of Posets and the minimum and	L2
	maximum conditions.	
CO2	Sketch the diagrams of lattices – sub lattices.	L3
CO3	Explain the concept of ideals, semi lattices, and theoretic duality	L4
	principle.	
CO4	Analize the concept of the complete lattices, conditionally complete	L4
	lattices and compactly generated lattices.	
CO5	Determine the concept of Galois connections, Dedekind cuts and	L5
	compact elements.	
CO6	Discriminate distributive lattices, modular lattices and covering	L5
	conditions.	

SEMESTER-IV

Course M401 – MEASURE THEORY

Code	COURSE OUTCOME	Level
CO1	Understand definition and properties of measurespaces, including	L2
	sigma algebras, measurable sets, and measures	
CO2	Explain the concepts of integration w.r.t a measure, including	L4
	Lebesgue integration and its properties	
CO3	Discuss fundamental theorems such as monotone convergence	L2
	theorem, dominated convergence theorem, Fatou's lemma and the	
	Radon – Nikodym theorem	
CO4	Understand the notion of measurability and properties of	L2
	measurable functions, including simple functions and the L ^P spaces	
CO5	Analyzevarious modes of convergence for sequences of functions,	L4
	like convergence almost everywhere, convergence in measureand	
	convergence in L^{P} spaces.	
CO6	Apply measure theory to other areas of mathematics, including	L3
	probability theory, functional analysis, and harmonic analysis	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

Course M402 – NUMERICAL ANALYSIS

Code	COURSE OUTCOME	Level
CO1	Understand the concept of Transcendental and polynomial	L2
	equations, Eigen values and Eigen vectors.	
CO2	AnalyzeBisection method, Regula - falsi method, Newton Raphson	L4
	method, Muller's method.	
CO3	Discuss about the concept of Rate of converges of secant method,	L2
	system of linear algebraic equations.	
CO4	Explaintriangulization method, cholesky method, partition method,	L4
	Gauss seidel iteration method.	
CO5	Demonstrate the concept of Finite difference operators, Sterling and	L2
	Bessel interpolation, Hermite interpolation, least square	
	approximation.	
CO6	Illustrateby Euler's method, Taylor's method, Runge Kutta 2 nd , 4 th	L3
	order methods.	

Course: M403 – GRAPH THEORY

Code	COURSE OUTCOME	Level
CO1	Understand the various basic terminology and structures of graphs, including vertices, edges, adjacency, degree, paths, circuits, and connectivity.	L2
CO2	Explain various graph algorithms, like depth – first search, breadth – first search, Prim's algorithm etc and algorithms for finding shortest paths and minimum spanning trees.	L4
CO3	Analyze properties of graphs, including planarity, Eulearian graphs, Hamiltonian graphs, colorability, matchings, and graph isomorphisms	L4
CO4	Explore advanced topics in graph theory, like graph coloring, graph embedding, graph decomposition, graph connectivity etc.	L5
CO5	Apply graph theory in various fields like operations research, network analysis, social sciences and optimization problems.	L3
CO6	Develop problem solving skills through solving theoretical and practical problems related to graphtheory	L6

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

Course: M404 – LINEAR PROGRAMMING

Code	COURSE OUTCOME	Level
CO1	Formulate real-world problems into the standard form of linear	L6
	programming, involving the identification of decision variables,	
	objective function, and constraints.	
CO2	Apply graphical methods to solve simple LP problems,	L3
	understanding concepts such as feasible region, objective function,	
	and optimal solution.	
CO3	Solve the LPP using simplex method, Big – M method, Two Phase	L3
	simplex Method.	
CO4	Analyze the comparison of solutions of the Dual and its primal.	L4
CO5	Explain travelling salesman problem	L4
CO6	Demonstrate optimal solutions of transportation problems and to	L2
	explain a method to resolve degeneracy, unbalanced transportation	
	problem.	

Course M405 – DISCRETE DYNAMICAL SYSTEMS

Code	COURSE OUTCOME	Level
CO1	Describe the dynamics of a function using phase portraits, periodic points and estimate the behavior of the functions graphically as well.	L2
CO2	Discuss about elegant theorems on continuous functions, differentiability of functions with different point view.	L2
CO3	Explain the parametrized family of functions, types of bifurcations, logistic functions and evaluate these functions with different hypothesis.	L4
CO4	Understand the notion of topological conjugacy and Newton's method to solve differential equations and solve problems	L2
CO5	Explainnumerical solutions of differential equations, the dynamics of complex functions, Quadratic family and Mandelbrot set and solve problems	L4
CO6	Summarize the computer programming to solve those problems like Newton's method, Numerical solutions to differential equations using computers which are necessary for a student in this digital world	L5