

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

MICROBIOLOGY

SEMESTER:I

COURSE:1 INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY(THEORY)

CO	COURSE OUTCOMES	LEVEL
CO1	Explain the importance and applications of microbiology.	L2
CO2	Understand the general characteristics of Prokaryotic	L2
	Microorganisms and Viruses	
CO3	Understand the vegetative structure, photosynthetic pigments,	L2
	and reproductive mechanisms of fungi, algae, and protozoa.	
CO4	Understand selective, enrichment, and differential media, as well	L2
	as preservation techniques for microbial cultures.	
CO5	Apply pure culture techniques such as dilution-plating, streak-	L3
	plate, spread-plate, pour-plate, and micromanipulator.	
CO6	Understand sterilization and disinfection techniques, including	L2
	physical, radiation, and chemical methods.	

COURSE:1 INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY LAB(PRACTICAL)

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the purpose of each ingredient used in the	L2
	preparation of culture media.	
CO2	Analyze the growth characteristics of different fungi on	L4
	Sabouraud's agar.	
CO3	Evaluate the impact of autoclaving on the quality of the	L5
	sterilized medium.	
CO4	Understand the principles of dry heat sterilization and its	L2
	applications.	
CO5	Apply proper staining techniques to visualize bacterial cells	L3
	under the microscope.	
CO6	Apply proper Gram staining techniques to differentiate	L3
	between Gram-positive and Gram-negative bacteria.	

(Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER:II

COURSE:2 MICROBIAL PHYSIOLOGY AND BIOCHEMISTRY(THEORY)

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the structure and function of carbohydrates, lipids,	L2
	proteins, and nucleic acids in biological systems.	
CO2	Understand the roles of coenzymes, cofactors, and different types	L2
	of enzyme inhibition in regulating enzyme activity.	
CO3	Demonstrate the principles and applications of colorimetry,	L2
	chromatography (including paper, thin-layer, and column	
	chromatography), spectrophotometry (UV & visible),	
	centrifugation, and gel electrophoresis.	
CO4	Understand the phases of microbial growth in batch cultures and	L2
	factors influencing microbial growth.	
CO5	Apply methods for measuring microbial growth such as direct	L3
	microscopy, viable count estimates, turbidometry, and biomass	
	measurement in microbial culture experiments	
CO6	Understand the biochemical reactions and energy production	L2
	mechanisms involved in aerobic respiration, anaerobic	
	respiration, fermentation, and photosynthesis.	

COURSE:2 MICROBIAL PHYSIOLOGY AND BIOCHEMISTRY LAB (PRACTICAL)

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the principles of various qualitative tests for	L2
	carbohydrates such as Molisch's test, Benedict's test, and	
	others.	
CO2	Apply qualitative tests to identify the presence of specific	L3
	amino acids in a given sample.	
CO3	Analyze the colorimetric readings obtained from the assay to	L4
	calculate protein concentration.	
CO4	Analyze the colorimetric readings obtained from the assay to	L4
	calculate protein concentration.	
CO5	Understand the mechanisms behind paper and thin layer	L2
	chromatography and how they separate components of	
	mixtures.	
CO6	Understand the mechanisms behind paper and thin layer	L2
	chromatography and how they separate components of	
	mixtures.	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER:III

COURSE:3 MOLECULARBIOLOGYANDMICROBIAL GENETICS(THEORY)

CO	COURSE OUTCOMES	LEVEL
CO1	Explain the structure and functions of DNA and RNA, as well as	L4
	the organization of DNA in prokaryotes.	
CO2	Understand the proof of the semi-conservative mechanism of	L2
	DNA replication, such as the Meselson-Stahl experiment.	
CO3	Describe the concept of a gene, including muton, recon, and	L2
	cistron, and the genetic code.	
CO4	Understand the processes of transcription and translation in	L2
	prokaryotes, as well as the regulation of gene expression in	
	bacteria, including the lac operon.	
CO5	Apply knowledge of mutations, damage, and repair mechanisms	L3
	to analyze genetic abnormalities and predict outcomes in genetic	
	studies.	
CO6	Understand the different types of vectors used in genetic	L2
	engineering, such as plasmids, cosmids, phagemids, and lambda	
	phage vectors, as well as gene cloning methods	

COURSE:3 MOLECULARBIOLOGYANDMICROBIAL GENETICS LAB (PRACTICAL)

CO	COURSE OUTCOMES	LEVEL
CO1	Apply knowledge of DNA and RNA structures to interpret micrographs and model representations.	L3
CO2	Apply proper techniques for isolating genomic DNA from E. coli cultures.	L3
CO3	Analyze spectrophotometric data to calculate DNA concentration and assess sample purity.	L4
CO4	Analyze spectrophotometric data to calculate DNA concentration and assess sample purity.	L4
CO5	Understand how SDS denatures proteins and imparts a uniform charge-to-mass ratio for separation.	L2
CO6	Evaluate the efficiency of UV mutagenesis for generating desired mutations in bacteria.	L5

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER:IV COURSE:4 IMMUNOLOGY AND MEDICAL MICROBIOLOGY(THEORY)

CO	COURSE OUTCOMES	LEVEL
CO1	Describe the functions of B and T lymphocytes, monocytes,	L2
	macrophages, neutrophils, basophils, eosinophils, and the	
	complement system, concept of innate and adaptive immunity	
CO2	Apply knowledge of immune responses to analyze antigen-	L3
	antibody interactions	
CO3	Understand the pathogenesis, epidemiology, diagnosis,	L2
	prevention, and control of bacterial, fungal, protozoal, and viral	
	diseases	
CO4	Apply knowledge of microbial diseases to analyze their causative	L3
	organisms, transmission routes, and preventive measures.	
CO5	Understand the methods used for microbial identification,	L2
	including culturing, biochemical tests, molecular assays, and	
	serological tests.	
CO6	Explain the modes of action of antibacterial, antifungal, and	L4
	antiviral agents, as well as tests for antimicrobial susceptibility	
	and antibiotic resistance.	

COURSE:4 IMMUNOLOGY AND MEDICAL MICROBIOLOGY LAB(PRACTICAL)

CO	COURSE OUTCOMES	LEVEL
CO1	Understand the principles of blood typing techniques such as	L2
	agglutination reactions.	
CO2	Apply proper techniques to separate serum from whole blood	L3
	samples.	
CO3	Evaluate the sensitivity and specificity of the Ouchterlony	L5
	method for detecting antigen-antibody complexes.	
CO4	Understand the principles of swabbing techniques for	L2
	microbial sampling.	
CO5	Evaluate the diagnostic significance of identifying various	L5
	malarial parasite stages in blood smears.	
CO6	Understand the principles of biochemical tests such as	L2
	IMViC, urease production, and catalase tests for bacterial	
	identification.	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

COURSE:5 MICROBIAL ECOLOGY AND INDUSTRIAL MICROBIOLOGY(THEORY)

CO	COURSE OUTCOMES	LEVEL
CO1	Interpret the role of microorganisms in various biogeochemical	L3
	cycles (carbon, nitrogen, phosphorus).	
CO2	Explain different types of microbe-microbe interactions such as	L4
	synergism, mutualism, commensalism, antagonism, competition,	
	parasitism, and predation.	
CO3	Apply knowledge of microbial detection techniques to assess the	L3
	potability of drinking water using standard qualitative procedures	
	and membrane filter techniques. Also, analyze intrinsic and	
	extrinsic parameters affecting microbial growth in food.	
CO4	Apply knowledge of industrial microbiology to assess the	L3
	suitability of different microorganisms for specific industrial	
	applications and techniques for improving their performance.	
CO5	Understand different types of fermentation processes such as	L2
	solid-state, liquid-state, batch, fed-batch, and continuous, along	
	with the composition of fermentation media, the design	
	principles of fermentation processes including control of pH,	
	temperature, dissolved oxygen, foaming, and aeration	
CO6	Understanding microbial production processes for various	L2
	industrial products such as citric acid, ethanol, penicillin,	
	glutamic acid, vitamin B12, amylase, and yogurt.	
COLU	CE - MICDODIAL ECOLOCY AND INDUCTDIAL MICDO	NAL A GI

COURSE:5 MICROBIAL ECOLOGY AND INDUSTRIAL MICROBIOLOGY LAB(PRACTICAL)

CO	COURSE OUTCOMES	LEVEL
CO1	Apply proper techniques for selective isolation of amylase-	L2
	producing microorganisms from soil samples.	
CO2	Analyze the characteristics of isolated microorganisms to	L4
	determine their role in food spoilage.	
CO3	Understand the microbial fermentation process that converts	L2
	milk into yogurt.	
CO4	Understand the concept of microbial growth inhibition and	L2
	competition in crowded plate technique.	
CO5	Evaluate the effectiveness of isolation methods in capturing	L5
	diverse soil microflora.	
CO6	Apply proper techniques for filtration or enrichment of water	L3
	samples to isolate microorganisms.	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER:V COURSE:6A FOOD ,AGRICULTURE AND ENVIRONMENTAL MICROBIOLOGY(THEORY)

CO	COURSE OUTCOMES	LEVEL
CO1	Apply knowledge of food-borne diseases like salmonellosis and	L3
	their detection methods.	
CO2	Understanding the principles of food preservation, including both	L2
	physical and chemical methods.	
CO3	Describe microbial groups present in soil and their roles in the	L2
	transformation of carbon, nitrogen, phosphorus, and sulfur.	
CO4	Explain beneficial microorganisms in agriculture, including	L4
	biofertilizers (bacterial, cyanobacterial, and fungal), microbial	
	insecticides, and agents for controlling plant diseases.	
CO5	Understand plant-microbe interactions and diseases caused by	L2
	bacteria and fungi in various commercial and food crops.	
CO6	Apply knowledge of sewage treatment processes, including	L3
	primary, secondary, and tertiary treatments, and understand their	
	applications in waste management	

COURSE:6A FOOD ,AGRICULTURE AND ENVIRONMENTAL MICROBIOLOGYLAB(PRACTICAL)

CO	COURSE OUTCOMES	LEVEL
CO1	Explain the principles behind the isolation techniques used and	L5
	the reasons for food spoilage by microorganisms.	
CO2	Understand the role of specific microorganisms, such as	L2
	lactobacilli, in yogurt fermentation.	
CO3	Apply the MBRT method to determine the microbial load in	L3
	milk samples	
CO4	Understand the concept of rhizosphere and its influence on	L2
	microbial communities.	
CO5	Apply the isolation techniques to obtain pure cultures of	L3
	rhizobium from root nodules.	
CO6	Understand the role of Azotobacter in nitrogen fixation and soil	L2
	fertility.	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikavi Nanaya University, Rajamahendravaram)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

COURSE:7A MANAGEMENT OF HUMAN MICROBIAL DISEASES AND DIAGNOSIS

CO	COURSE OUTCOMES	LEVEL
CO1	Understand bacterial, viral, fungal, and protozoan diseases affecting	L2
	various human body systems and the clinical samples used for their	
	diagnosis	
CO2	Explain the collection of clinical samples from different body sites	L4
	and the precautions required. Also, understand the methods of	
	transport and storage of clinical samples.	
CO3	Demonstrate staining techniques like Gram stain, Ziehl-Neelsen	L2
	staining for tuberculosis, and Giemsa-stained thin blood film for	
	malaria. Also, understand the preparation and use of culture media	
	for bacterial growth.	
CO4	Interpret serological methods like agglutination and ELISA, nucleic	L2
	acid-based methods like PCR, and their applications in diagnosing	
	diseases like Typhoid, Dengue, HIV, and Swine flu.	
CO5	Explain the importance of antibiotic resistance and methods for	L4
	determining bacterial resistance/sensitivity using the disc diffusion	
	method and minimal inhibitory concentration (MIC) determination.	
CO6	Apply knowledge of antibiotic resistance and epidemiological	L3
	investigations to assess and address the challenges posed by drug-	
	resistant bacteria.	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

COURSE:7A MANAGEMENT OF HUMAN MICROBIAL DISEASES AND DIAGNOSISLAB(PRACTICAL)

CO	COURSE OUTCOMES	LEVEL
CO1	Explain the importance of proper labeling, recording, and dispatching of clinical specimens to ensure accurate diagnosis and patient safety.	L2
CO2	Analyze the physical, chemical, and microscopic characteristics of clinical samples to identify abnormalities and potential indications of disease.	L4
CO3	Evaluate the effectiveness of different isolation and identification methods in detecting E. coli, Salmonella, and Pseudomonas from clinical specimens.	L5
CO4	Assess the reliability and accuracy of hemoglobin estimation results obtained using the acid hematin and cyanmethemoglobin methods, considering factors such as sample integrity and procedural errors.	L5
CO5	Interpret ESR and PCV values in relation to various clinical conditions and diseases	L2
CO6	Analyze blood group typing results to determine ABO and Rh blood groups and interpret discrepancies.	L4