

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

ZOOLOGY SEMESTER –I

PAPER – I - ANIMAL DIVERSITY- BIOLOGY OF NON-CHORDATES (THEORY PAPER)

CO	COURSE Outcomes	Levels
CO1	Demonstrate the application of taxonomic principles to identify and classify different invertebrate specimens into their respective phyla.	L2
CO 2	Explain the main differences between various invertebrate phyla in terms of their anatomical structures and physiological processes	L2
CO 3	Apply knowledge of invertebrate life cycles to predict and interpret the adaptive significance of different reproductive strategies employed by various animals	L3
CO 4	Apply principles of invertebrate evolution to interpret the adaptive significance of specific traits or behaviors observed in different invertebrate taxa.	L3
CO 5	Compare the structural adaptations of different invertebrate taxa to their habitats and lifestyles	L4
CO 6	Evaluate the diversity, complexity, and importance of non- chordate animals in the natural world	L5

PAPER – I - ANIMAL DIVERSITY- BIOLOGY OF NON-CHORDATES (PRACTICAL PAPER)

CO	COURSE Outcomes	Levels
CO1	Identify the key characteristics of different invertebrate phyla.	L2
CO 2	Demonstrate skill in preparing microscope slides of invertebrate	L2
	specimens	
CO3	Analyze collected data sets of invertebrate abundance, diversity,	L4
	and distribution	
CO 4	Students will critically assess and interpret the external and	L5
	internal anatomy of selected invertebrate taxa, through virtual	
	dissections	
CO 5	Students will be able to design and run vermiculture system with	L6
	latest and innovative methods	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER –II

COURSE– II - ANIMAL DIVERSITY- BIOLOGY OF CHORDATES (THEORY PAPER)

CO	COURSE Outcomes	Levels
C01	Develop an understanding of the characters used to classify besides being able to differentiate the organisms belonging to	L2-
	different taxa	1.2
CO 2	Identify the anatomical features and physiological adaptations of chordates	L2
CO 3	Relate the knowledge of vertebrate life cycles to predict and interpret the adaptive significance of different reproductive strategies employed by various animals	L3
CO 4	Apply knowledge of chordate physiology to predict how changes in environmental factors, might affect the metabolic rates and behavior of different vertebrate species.	L3
CO 5	Compare and contrast the evolutionary relationships between major groups of chordates	L4
CO 6	Students will evaluate the effectiveness of various conservation strategies for protecting endangered chordate species,	L5

COURSE– II - ANIMAL DIVERSITY- BIOLOGY OF CHORDATES (PRACTICAL PAPER)

CO	COURSE Outcomes	Levels
CO1	List examples of representative species within each chordate class, along with their key anatomical features and ecological	L1
	adaptations.	LI
CO 2	Apply taxonomic keys and identification guides to classify and identify chordate specimens based on external morphology, skeletal characteristics, and other diagnostic features.	L3
CO 3	Utilize dissection techniques to explore the internal anatomy of representative chordate species.	L2
CO 4	Analyze comparative anatomical data from different chordate taxa	L4
CO 5	Synthesize information from laboratory investigations	L6

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER –III

COURSE – III - CELL BIOLOGY, GENETICS & EVOLUTION (THEORY PAPER)

CO	COURSE Outcomes	Levels
CO1	Recall fundamental concepts in cell biology, including cell	L1
	structure, organelle function, and cellular processes such as	
	metabolism and cell division	
CO 2	Discuss different Cellular transport mechanisms, energy	L2
	metabolism and cell cycle stages	
CO 3	Explain the principles of classical and molecular genetics,	L2
	including Mendelian inheritance patterns, genetic variation, and	
	gene expression	
CO 4	Apply genetic principles to solve problems related to inheritance,	L3
	gene mapping, and genetic disorders	
CO 5	Analyze evolutionary processes and patterns, including natural	L4
	selection, genetic drift, speciation, and the evidence for evolution	
CO 6	Evaluate the impact of genetic variation on evolution, population	L5
	genetics, and human health	

COURSE– III- CELL BIOLOGY, GENETICS & EVOLUTION (PRACTICAL PAPER)

CO	COURSE Outcomes	Levels
CO1	Memorize the functions of cellular organelles and structures	L1
CO 2	List examples of different cell types and their specialized	L2
	functions in multicellular organisms	
CO 3	Interpret diagrams, micrographs, and experimental data related to	L3
	cell structure and function, identifying key features and patterns	
	observed in different cell types and cell divisions in experimental	
	conditions.	
CO 4	Students will analyze genetic principles and utilize appropriate	L4
	tools to dissect and interpret problems related to population	
	genetics, genetic inheritance, and genetic disorders	
CO 5	Students will evaluate the impact of various inherited genetic	L5
	disorders, analyzing the associated genetic mutations, their	
	physiological effects, and implications for affected individuals.	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikayi Nanaya University, Pajamahandrayaram)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER –IV COURSE– IV - ANIMAL PHYSIOLOGY, MOLECULAR BIOLOGY & EMBRYOLOGY (THEORY PAPER)

CO	COURSE Outcomes	Levels
CO1	Explain how different physiological systems coordinate to	L2
	maintain internal balance in animals.	
CO 2	Discuss the relationships between environmental factors and	L2
	physiological adaptations in animals.	
CO 3	Relate the molecular basis of inheritance and gene regulation in	L3
	prokaryotic and eukaryotic organisms.	
CO 4	Demonstrate the application of molecular biology concepts in	L3
	practical scenarios, such as designing experiments or interpreting	
	genetic data.	
CO 5	Compare and contrast the mechanisms of embryonic patterning	L4
	and morphogenesis across different species.	
CO 6	Evaluate the reliability and validity of experimental evidence and	L5
	scientific literature in the field of embryology, animal physiology.	

COURSE– IV- ANIMAL PHYSIOLOGY, MOLECULAR BIOLOGY & EMBRYOLOGY (PRACTICAL PAPER)

CO	COURSE Outcomes	Levels
CO1	Demonstrate practical skills in conducting physiological	L3
	experiments, including using laboratory equipment and	
	techniques.	
CO 2	Reinforce identification skills and understanding of histological	L3
	structures.	
CO 3	Understand the importance of biochemical analysis in biological	L2
	research.	
CO 4	Students will evaluate the significance of embryological concepts	L5
	and the technique of fate mapping, critically assessing their	
	implications and applications in developmental biology	
CO 5	Communicate findings effectively through presentations, reports,	L6
	or scientific papers.	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN- 534202. (Accredited at 'B⁺⁺, level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

COURSE– V - IMMUNOLOGY & ANIMAL BIOTECHNOLOGY (THEORY PAPER)

CO	COURSE Outcomes	Levels
CO1	Recognizing the distinction between innate and adaptive	L2
	immunity and explaining their respective roles in host defense.	
CO 2	Describing the structure and function of key immune cells, such	L2
	as lymphocytes, macrophages, and dendritic cells.	
CO 3	Differentiating between the four types of hypersensitivity	L3
	reactions (Type I to Type IV) based on underlying immunological	
	mechanisms.	
CO 4	Apply knowledge on cloning vectors, Recombinant DNA	L3
	technology, transgenesis, stem cells and their applications.	
CO 5	Analyzing the biochemical pathways involved in fermentation,	L4
	such as glycolysis, alcoholic fermentation, and lactic acid	
	fermentation, and their roles in energy production and substrate	
	utilization	
CO 6	Critically examining ethical principles, moral values, and animal	L5
	welfare concerns related to the genetic engineering, cloning, and	
	use of animals in biomedicine, agriculture, and environmental	
	management	

COURSE– V - IMMUNOLOGY & ANIMAL BIOTECHNOLOGY (PRACTICAL PAPER)

CO	COURSE Outcomes	Levels
CO1	Recognize the role of lymphoid organs in the immune system.	L1
CO 2	Microscopic examination and identification of different	L3
	histological slides .	
CO 3	Demonstration of the blood group determination process.	L3
CO 4	Analyze the results of an ELISA to determine the presence of	L4
	specific antigens or antibodies.	
CO 5	Students will critically evaluate the effectiveness and ethical	L5
	implications of various biotechnological techniques in animal	
	science	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adilevi Nenneue University, Reisenshenderwarem)

(Affiliated to Adikavi Nannaya University, Rajamahendravaram)

SEMESTER –V COURSE– VI - SUSTAINABLE AQUACULTURE MANAGEMENT (THEORY PAPER)

СО	COURSE Outcomes	Levels
CO1	Understand the taxonomic keys, morphometric measurements,	L2
	and diagnostic characters to classify different Aquatic species	
CO 2	Explain the ecological principles underlying sustainable	L2
	aquaculture practices, including water quality management and	
	habitat conservation	
CO 3		L3
	including pond culture, cage culture, raceways, and recirculating	
	aquaculture systems	
CO 4	Calculate the advantages and limitations of extensive, semi-	L3
	intensive, and intensive aquaculture production methods for	
	various aquatic species	
CO 5	Analyse knowledge of aquaculture nutrition and health	L4
	management to optimize feed formulations and disease	
	prevention strategies	
CO 6	Evaluate the sustainability of different aquaculture systems based	L5
	on criteria such as resource use efficiency and ecosystem health	

COURSE– VI - SUSTAINABLE AQUACULTURE MANAGEMENT (PRACTICAL PAPER)

CO	COURSE Outcomes	Levels
CO1	Recognize the importance of accurate identification of different	L2
	aquatic species	
CO 2	Perform a basic external examination of fish and prawns to	L3
	identify signs of disease.	
CO 3	Demonstration of different laboratory test for determination of	L3
	water quality parameters	
CO 4	Students will critically evaluate the step-by-step procedure of the	L5
	hypophysation technique,	
CO 5	Students will design innovative pond management strategies	L6
	aimed at maximizing fish and prawn yield	

(Autonomous)

BHIMAVARAM, W.G.DIST, ANDHRA PRADESH, INDIA, PIN-534202. (Accredited at 'B⁺⁺' level by NAAC) (Affiliated to Adikavi Nannaya University, Rajamahendravaram)

COURSE- VII - POST HARVEST TECHNOLOGY FISH AND FISHERIES (THEORY PAPER)

CO	COURSE Outcomes	Levels
CO1	Recall the principles and importance of post-harvest handling and	L1
	processing in the fishery industry	
CO 2	Interpret the principles behind different fish processing	L2
	techniques and their applications in preserving fish quality.	
CO 3	Classify various fish products and by-products throwing light on	L2
	their significance	
CO 4	Apply appropriate post-harvest handling techniques to maintain	L3
	the quality and safety of fish products	
CO 5	Conduct a detailed analysis of the effectiveness of HACCP	L4
	protocols within fisheries processing units	
CO 6	Evaluate the efficacy of novel post-harvest technologies in	L5
	improving fish quality and safety.	

COURSE– VII - POST HARVEST TECHNOLOGY FISH AND FISHERIES (PRACTICAL PAPER)

CO	COURSE Outcomes	Levels
CO1	Understand the concept of organoleptic evaluation and its	L2
	significance in assessing the sensory attributes of fish or fishery	
	products.	
CO 2	Apply appropriate drying techniques to preserve fish products.	L3
CO 3	Analyze the operation and maintenance procedures of analytical	L4
	instruments like spectrophotometers, titrators, and moisture	
	analyzers utilized for conducting salt, protein, and moisture	
	analyses	
CO 4	Evaluate different extraction methods for isinglass, collagen, and	L5
	chitosan from shrimp and crab shells	
CO 5	Develop step-by-step procedures for optimizing seafood	L6
	freshness, safety, and marketability, while emphasizing	
	sustainability and environmental responsibility	