DANTULURI NARAYANA RAJU COLLEGE (AUTONOMOUS) Bhimavaram, W.G.DIST. A.P.

II.B.Sc

Paper 3 - ABSTRACT ALGEBRA

Department of Mathematics,

D.N.R College(A), Bhimavaram

DANTULURI NARAYANA RAJU COLLEGE (AUTONOMOUS) (A College with Potential for Excellence) Bhimavaram, W.G.DIST. A.P. II B.Sc Paper: 2B- <u>ABSTRACT ALGEBRA</u>

Unit - 1: Groups

Unit - 2: Sub Groups

Unit - 3: Normal Sub Groups

Unit - 4: Homomorphism

Unit - 5: Permutations and Cyclic Groups

Unit -1: Groups

INTRODUCTION :

Set : Collection of well – defined objects. **Empty Set :** Having No Elements in the Set. Non – Empty Set : Having at least one Element in the Set. **Binary Operation / Closure Law** Let S be a non – empty set . If $*: S \times S \rightarrow S$ is a mapping then * is called binary operation on S . If for all a , b $\varepsilon\,S \to a^*b\,\varepsilon\,S$ **Examples:** 1. +,-, \cdot are binary operations on Z For 1.2 \in Z \rightarrow 1+2=3 \in Z \rightarrow 1-2=-1 \in Z \rightarrow 1·2=2 \in Z 2. / is not binary operation on ZFor 1,2 \in Z \rightarrow 1/2 \notin Z

Algebraic Structure :

A non – empty set equipped with one (or) more binary operations is called an Algebraic Structure

Examples :

 $(Z,+), (Z,-), (Z,\cdot), (Z,+,\cdot)$ are all algebraic structures and (Z, /) is not an algebraic structure.

NOTE:

If + is a binary operation on S then the algebraic structure can be written as (S, +)

Associative Law :

A binary operation * on S is said to be associative if (a*b)*c = a*(b*c), for all a,b,c \in S.

Examples :

+, * satisfies associative property in Z.

/, - does not satisfies associative property in ${\bf Z}$

Semi Group :

An Algebraic structure (G,*) is called a Semi Group if it satisfies the Associative Law with * in G.

Identity Element :

Let S be a non – empty set and * be a binary operation on S. If there exist $e_1 \in S$ such that $e_1^*a=a$, for all $a \in S$, then e_1 is called the *left Identity* of S with respect to the binary operation *.

Let S be a non – empty set and * be a binary operation on S. If there exist $e_2 \in S$ such that $a^* e_2 = a$, for all $a \in S$, then e_2 is called the *Right Identity* of S with respect to the binary operation *.

Let S be a non – empty set and * be a binary operation on S. If there exist $e \in S$ such that $e^*a = a^*e = a$, for all $a \in S$, then e is called the *Identity Element* of S with respect to the binary operation *.

Additive Identity is zero.

Multiplicative Identity is One.

Examples :

- 1. In (z,+) the identity is zero.
- 2. In (\mathbf{R}, \cdot) the identity is one.

Monoid :

A semi Group (G,*) with identity **e** with respect to the binary operation * is called Monoid. **Example :**

1. (Z,+) is a monoid with identity Zero.

2. (N,+) is not a monoid because it has no identity element.

Invertible Element :

Let (S,*) be a semi Group with identity e. An element a $\in S$ is said to be invertible .If there exists b $\in S$ such that a*b = b*a = e

Here b is called inverse of a in S. **Examples:**

 a+(-a) = 0 →identity Here, -a is the Inverse of a.
 a · (1/a) = 1 →identity Here, a⁻¹ is the Inverse of a.

GROUP:

An Algebraic structure (G, *) is said to be a group , if the following conditions are hold.

(i) Associative : $(a*b)*c = a*(b*c) , \forall a, b, c \in G$

(ii) Existence of Identity :
∃e ∈G ∋ a*e = e*a =a, ∀ a €G.
(iii) Existence of Inverse :
for each a ∈G ∃ b ∈G ∋ a*b = b*a =e.

Examples : (Z,+) is a Group. **Solution :**Given that (Z,+) **Claim :** (Z, +) is a Group. Clearly, (Z, +) is an Algebraic Structure so, + is binary operation (i) Associative : Let a = 1, b = 2, c = 3(a + b) + c = a + (b + c)(1+2) + 3 = 1 + (2+3)6 = 6: Associative Laws holds. (ii) Existence of Identity : Let e EZ ,a EZ $a^*e = e^*a = a$ a + e = a(i) e = a - ae = 0substitute, e = 0 in (i) a + 0 = a $\mathbf{a} = \mathbf{a}$ \therefore 0 is the identity (iii) Existence of Inverse : Let a, b \in Z, e \in Z. a + b = e $\mathbf{a} + \mathbf{b} = \mathbf{0}$ b = -a Here, "b" is the inverse of "a"

Let a = -1, b = -(-1) = 1Take, a + b = b + a = ethen -1 + 1 = 1 - 1 = e 0 = 0 = e \therefore Every Element in Z has Inverse . $\therefore (Z, +)$ forms a Group. (N, +) is not a Group. Here Additive Identity is Zero, but we know that the set of all Natural numbers are N = {1, 2, 3, ...} Here, the Identity element '0' does not exist. So, (N, +) is not a Group. (N, \cdot) is not a Group. Here, Inverse condition fails because N does not contains negative numbers.

So, (N, \cdot) is not a Group.

AbelianGroup :

A Group (G, *) is said to be Abelian if * is commutative. i.e., $a*b = b*a \quad \forall a, b \in G$.

Finite and Infinite Groups :

If the set G contains a finite number of elements then the group G is called finite Group.

Otherwise, it is known as an Infinite Group.

Problems:

If the set G of all even integers forms an abelian group under addition as the operation.

(or)

If $G = \{2x \mid x \in Z\}$, then Show that (G,+) forms an Abelian group.

Solution:

Given that G = $\{2x/x \in Z\}$ = $\{\dots, -4, -2, 0, 2, 4, \dots\}$ Let a,b,c $\in G$ Here, a = 2α , b = 2β , c = 2γ , where α , β , $\gamma \in Z$ Claim :

(G,*) forms an abelian group

(i) Binary Operation / Closure law:

Let a, b \in G Now, a + b = 2 α + 2 β = 2(α + β) \in G = a + b \in G Therefore, + is binary operation on G. (ii) Associative law: Let a, b, c \in G (a + b) + c = (2 α + 2 β) + 2 γ

 $= 2(\alpha + \beta) + 2\gamma$ $= 2[(\alpha + \beta) + \gamma]$ $= 2[\alpha + (\beta + \gamma)]$ $= 2\alpha + [(2\beta + 2\gamma)]$ = a + (b + c)(a + b) + c = a + (b + c)Therefore, Associative law holds. (iii) Existence of Identity: Let a C G We know that $0 \in G$ Now $a + 0 = 2\alpha + 0$ $= 2\alpha + 2(0)$ $=2(\alpha+0)$ $= 2\alpha$ = aTherefore, '0' is the identity in 'G' (iv) Existence of Inverse: Let a CG $a = 2\alpha$, for some $\alpha \in \mathbb{Z}$ $-a = -2\alpha$, for some $-\alpha \in \mathbb{Z}$ \rightarrow -a $\in G$ Now $a + (-a) = 2\alpha + (-2\alpha)$ $= 2\alpha - 2\alpha$ $= 2(\alpha - \alpha)$ = 2(0)= 0= e: '-a' is the inverse element of 'a' in G : Every Element in G has Inverse. (G, +) is a Group. AbelianGroup (Commutative Law): Let $a, b \in G$ Now, $a + b = 2\alpha + 2\beta$ $= 2(\alpha + \beta)$ $= 2(\beta + \alpha)$ $= 2\beta + 2\alpha$ = b + a

 \therefore (G, +) is an abelian group.

2. Show that the set Q⁺ of all positive rational numbers forms an abelian group under the composition defined by o (circle) such that $aob = \frac{ab}{3} \forall a, b \in Q^+$ Solution: Given that Q⁺= The set of all positive rational numbers forms an abelian group under the composition defined by o(circle), such that $aob = \frac{ab}{3} \forall a, b \in Q^+$

Claims : $(\mathbf{Q}^+, \mathbf{0})$ forms an abelian group. (i) Binary Operation / Closure Law : Let a, b $\in Q^+$ $aob = \frac{ab}{3} \in Q^+$ aob $\in \check{Q}^+$ \therefore o is binary in Q⁺ (ii) Associative law: Let a, b, c $\in Q^+$ (ao b) o c = $\begin{pmatrix} ab \\ 3 \end{pmatrix}$ o c $= \left(\frac{ab}{3}\right)c/3$ $= \left(\frac{abc}{9}\right)$ $= a\left(\frac{bc}{3}\right)/3$ $= \left(\frac{abc}{9}\right)$ ao (b o c) = a o $\frac{bc}{3}$ (ao b) o c = a o(b o c)Therefore, Associative law holds. (iii) Existence of Identity: t a $\in Q^+$ Suppose that a o e = a for some e $\in Q^+$ $\frac{ae}{3} = a$ Let a $\in Q^+$ \rightarrow ae -3e = 0 $\rightarrow a(e - 3) = 0$ $\rightarrow a \neq 0$ (or) e - 3 = 0 $\rightarrow e - 3 = 0$ $\rightarrow e = 3 \in Q^+$ Now, as $e = a \circ 3 = \frac{a^3}{3} = a$ ao e = a \therefore e = 3 is the identity in Q⁺ (iv) Existence of Inverse: Let a $\in Q^+$, b $\in Q^+$ Suppose that, a o b = e $\frac{ab}{3} = a$ $\frac{ab}{3} = 3$ ab = 9 $b = \frac{9}{7} \mathbb{C} Q^+$

ao b = a o $\left(\frac{9}{a}\right)$ = $a\left(\frac{9}{a}\right) / 3$ = 9/3= 3= e \therefore ao b = e

 \therefore Every element in Q⁺ has Inverse

Commutative:

Let a, b $\in Q^+$ Now a o b = $\frac{ab}{3}$ = $\frac{ba}{3}$ = b o a ao b = b o a $\therefore (Q^+, o)$ forms an abelian group.

Problem:

```
Show that the set Z forms an abelian group w.r.to the operation * defined by
a*b = a+b+2 \forall a, b \in \mathbb{Z}.
Solution : Given that Z = \{0, \pm 1, \pm 2, \pm 3, \pm 4, ...\}
and a*b = a+b+2
Claim: (Z, *) forms an abelian group.
(i) Binary Operation / Closure Law :
Let a, b \in \mathbb{Z}
a*b = a+b+2 \in \mathbb{Z}
       a*b €Z
\therefore * is binary in
(ii) Associative law:
        Let a, b, c \in Z
       (a*b)*c = (a+b+2)*c
                  =a+b+2+c+2
a^{*}(b^{*}c) = a^{*}(b+2+c)
                  = a+b+2+c+2
       (a*b)*c = a*(b*c)
  :.
 (iii) Existence of Identity:
        Let a \in Z
           Suppose that a^*e = a, for some e \in Z
               \rightarrow a+e+2 =a
               \rightarrow a+e+2-a =0
               \rightarrow e+2 =0
               \rightarrow e = - 2 \in Z
```

Now $a^*e = a^*(-2)$ = a^{-2+2} = a $\therefore a^*e = a$ $\therefore e = -2$ is the identity in Z.

(iv) Existence of Inverse:

Let $a \in Z$, $b \in Z$ Suppose that, a * b = ea + b + 2 = -2a + b = -2 - 2a + b = -4a* b = a + b + 2= -4 + 2= -2= e \therefore a * b = e

Commutative:

Let $a, b \in Z$ $a^* b = a+b+2$ = b+a+2 $= b^* a$ \therefore $a^* b = b^* a$ (Z, *) forms an abelian group.

Problem:

If $G = Q - \{1\}$ and * is defined as a*b = a + b - ab then show that (G , *) is an abelian group.

Solution:

Given that $G = Q - \{1\}$ and a*b = a + b - ab. Let $a, b \in Q \rightarrow ab \in Q$, $a \neq 1, b \neq 1$ Claim: (G,*) forms an abelian group. (i) Binary Operation / Closure Law : Let $a, b \in G$ $a*b \in Q$ Now we have to prove that $a*b \neq 1$ Suppose that a*b = 1 a+b-ab = 1 a+b-ab = 1 a+b(1-a) = 1 1(a-1)+b(1-a) = 0 (a-1)(1-b) = 0a-1 = 0 (or) 1-b = 0

∴a*b ≠1 €G \therefore * is binary in G (ii) Associative law: Let $a, b, c \in G$ (a*b)*c = (a+b-ab)*c= (a+b-ab)+c-(a+b-ab)c= a+ b-ab+c- ac-bc+abc =a+b+c-ab-bc-ca+abc $a^{*}(b^{*}c) = a^{*}(b+c-bc)$ = a+(b+c-bc) -a (b+c-bc) = a+b+c-ab-ac-bc+abc=a+b+c-ab-bc-ca+abc (a*b)*c = a*(b*c)... (iii) Existence of Identity: Let a \in G Suppose that $a^*e = a$ a + e - ae = ae - ae = 0e(1 - a) = 0e = 0 (or) 1-a = 0 $\therefore e = 0 \in G$ Now $a^*e = a * 0$ = a + 0 - a(0)= a $a^*e = a$ e = 0 is the identity in G. ...

a = 1 (or) b = 1

which is a contradiction to $a \neq 1$, $b \neq 1$

(iv) Existence of Inverse:

Let $a \in G$ Suppose that $a^*b = 0$ $\rightarrow a+b-ab = 0$ $\rightarrow a+b(1-a) = 0$ $\rightarrow b(1-a) = -a$ $\rightarrow b = \frac{-a}{1-a}$ $\rightarrow b = \frac{-a}{1-a}$ $\rightarrow b = \frac{-a}{(a-1)}$ Now, $a^*b = a^*(\frac{a}{(a-1)})$

$$= a + \frac{a}{(a-1)} - a(\frac{a}{(a-1)})$$

$$= \frac{a(a-1)+a-a2}{a-1}$$

$$= \frac{0}{a-1}$$

$$= 0$$

$$\therefore a^*b = e$$

$$\therefore Every Element in G has Inverse.$$
Commutative:
Let a,b $\in G$
 $a^*b = a+b-ab$
 $= b+a-ba$
 $= b^*a$
 $\therefore a^*b = b^*a$
(G, *) forms an abelian group.

Problem: Show that the set G of rational numbers other than one under the composition defined by \oplus , such that $a \oplus b = a + b - ab$ for $a, b \in G$. forms an abelian group and hence show that x = 3/2, is a solution of $4 \oplus 5 \oplus x = 7$ Solution: Given that $G = Q - \{1\}$ and $a \oplus b = a + b - ab$, for a, b, $\in G$. Let a, b, c \in G \rightarrow a, b, c \in Q, but a \neq 1, b \neq 1, c \neq 1 Claim: (G, \bigoplus) forms an abelian group. (i) Binary Operation / Closure Law : Let a, b CG $a \oplus b = a + b - ab \in Q$ a⊕b €O Now we have to prove that $a \oplus b \neq 1$ Suppose that $a \oplus b = 1$ a+b-ab = 1a+b(1-a) = 11(a-1)+b(1-a) = 0(a-1)(1-b) = 0a-1 = 0 (or) 1-b = 0a = 1 (or) b = 1which is a contradiction to $a \neq 1$, $b \neq 1$ ∴a⊕b ≠1 €G $\therefore \bigoplus$ is binary in G (ii) Associative law: Let $a, b, c \in G$ $(a \oplus b) \oplus c = (a+b-ab) \oplus c$ = (a+b-ab)+c-(a+b-ab)c= a+ b-ab+c- ac-bc+abc

```
=a+b+c-ab-bc-ca+abc
       a \oplus (b \oplus c) = a \oplus (b + c - bc)
                   =a+(b+c-bc)-a(b+c-bc)
                  = a + b + c - ab - ac - bc + abc
                    =a+b+c-ab-bc-ca+abc
         (a \oplus b) \oplus c = a \oplus (b \oplus c)
    ..
    (iii) Existence of Identity:
               Let a \in G
                \rightarrow a \neq 1
   Suppose that a \bigoplus e = a
                    a + e - ae = a
                     e - ae = 0
e(1 - a) = 0
                  e = 0 (or) 1 - a = 0
\therefore e = 0 \in G
        Now a \oplus e = a \oplus 0
             = a + 0 - a(0)
             = a
        a^*e = a
        \therefore e = 0 is the identity in G.
```

(iv) Existence of Inverse:

Let $a \in G$ Suppose that $a \bigoplus b = 0$, for some $b \in G$ $\rightarrow a+b-ab = 0$ $\rightarrow a+b(1-a) = 0$ $\rightarrow b(1-a) = -a$ $\rightarrow b = \frac{-a}{a}$ $\rightarrow b = \frac{-a}{(a-1)}$ $\rightarrow b = \frac{-a}{(a-1)}$ $\rightarrow b = \frac{-a}{(a-1)}$ $\rightarrow b = \frac{-a}{(a-1)}$ $= a + \frac{a}{(a-1)} - a(\frac{a}{(a-1)})$ $= \frac{a(a-1)+a-a2}{a-1}$ $= \frac{0}{a-1}$ = 0 $\therefore a \oplus b = e$ \therefore Every Element in G has Inverse. Commutative: Let a,b $\in G$

THEOREM : In a group the identity element is unique . **PROOF:** Let e_1 , e_2 be two identities ina group (G, \cdot) **CLAIM :** $e_1=e_2$ Since e_1 be the identity and $e_2\in G$ $e_1.e_2 = e_2.e_1=e_2---(1)$

 $e_1.e_2 = e_2.e_1 = e_2--(1)$ since e_2 be the identity and $e_1 \in G$

 $e_{2.} e_1 = e_1.e_2 = e_1 \dots (2)$

from 1&2

 $e_1 = e_2$

hence in a group, the identity element is unique.

THEOREM: In a group the inverse of any element is unique.

PROOF :Let (G, ·) be a group and `e" be the identity in G , a∈G Let b,c are two inverses of `a" a.b=b.a =e ---(1) since c is the inverse of `a" a.c =c.a=e----(2) now b=b.e =b(a.c) =(ba)c = e.c = c Therefore b=c

Therefore In a group ,the inverse of each element is unique

CANCELLATION LAWS :

Let a,b ,c \in G and a \neq 0 then left cancellation law (LCL):

Ab=bc=> b=c RIGHT CANCELLATION LAW (RCL): ba=ca=> b=c

THEOREM :

Cancellation laws hold in a group in a group G. **PROOF** : Let $a,b,c\in G$ and $a\neq 0$ Let 'e" be the identity in G L.C.L: Now ab=ac $a^{-1}(ab) = a^{-1}(ac)$ $(a^{-1}a)b = (a^{-1}a)c$ Eb=ec b=c R.C.L: Now consider ba =ca (ba) $a^{-1} = ((a))a^{-1}$ $B(a a^{-1})=c(a a^{-1})$ b=c therefore hence cancelation laws in group G **THEOREM** : IN a group G and $a,b\in G$ then $(ab)^{-1}=b^{-1}a^{-1}$ **PROOF** : Let $a, b \in G$ and 'e" be the identity in G **CLAIM** : $(ab)^{-1} = b^{-1} a^{-1}$ $(1/ab) = b^{-1}a^{-1}$ $1 = (a.b) (b^{-1} a^{-1})$ Now consider (ab) = $(b^{-1} a^{-1})$ $=(ab b^{-1}).a^{-1}$ = a.e.a⁻¹ (therefore e=1) $= a.a^{-1}$ =1

Now consider $(b^{-1} a^{-1}) (a.b) = (b^{-1} a^{-1} a).b$ = $b^{-1}.e.b (e=1)$ = $b^{-1}.b$ =1 Therefore $(ab)^{-1} = b^{-1} a^{-1}$

Problem

Show that a group G is an abelian \Box (if and only if) $(ab)^2 = a^2b^2\forall a, b\in G$ Soln: given that G be a group Suppose that $(ab)^2 = a^2b^2\forall a, b\in G$ Claim: G Isabelian That is ab=ba $(ab)^2 = a^2.b^2$ Consider (ab) (ab)=(a.a) (b.b) a(bc)=(ab)c (ab)a)b=(a.a)b)b A(ba)b=a(ab)b Ba=ab Therefore G is abelian Conversely suppose that G is abelian ,that is ab=ba

CLAIM:
$$(ab)^2 = a^2 \cdot b^2 \forall a, b \in G$$

Consider $(ab)^2 = (a b) (ab)$
 $= a(ba)b$
 $= a(ab)b$
 $= (a.a) (b.b)$
 $= a^2 \cdot b^2$
 $(ab)^2 = a^2 \cdot b^2 \forall a, b \in G$
Therefore a group G is an abelian $\Box (ab)^2 = a^2 \cdot b^2 \forall a, b \in G$

THEOREM : In a group G , for $a \in G a^{-1}=a$ then show that G is abelian **PROOF** : given that G be a group , for $a \in G a^{-1}=a$

CLAIM : G is abelian Let $a,b\in G$ $a^{-1}=a$, $b^{-1}=b$ since $a,b\in G=>a,b\in G$ $(a b)^{-1}=ab$ $b^{-1}.a^{-1}=ab$ b.a =abtherefore G is abelian

NOTE : A semigroup (G, \cdot) is a group \Box for an a.b \in G the eq ax=b and ya=b have solutions in

G.

THEOREM : A finite semi group (G, \cdot) satisfying cancellation laws is a group **PROOF**: Let $G = \{a_1, a_2, ..., a_n\}$ be a finite semigroup with `n" distinct elements and cancellation laws hold in G **CLAIM** : (G, \cdot) is a group Let $a \in G$

- \Rightarrow a. a_1 , a. a_2 , ... a. $a_n \in G$
- $\Rightarrow a. a_1, a.a_2, \dots a.a_n \text{ are all distinct elements in } G$ let $b \in G$
- \Rightarrow b= a.a_k for some unique a_k in G
- \Rightarrow a.a_k=b

ax=b has unique solution in G similarly , we get ya=b has a unique solution in G therefore (G,\cdot) is a group

THEOREM : If G is a group such that $(ab)^n = a^n b^n$ for three consecutive positive integers $\forall a, b \in G$ then show that (G, \cdot) is an abelian group.

Proof : Given that G is a group let $a,b\in G$

Let m, m+1, m+2 be three consecutive positive integers.

Such that $(ab)^{m}=a^{m}.b^{m}-\cdots(1)$ $(ab)^{m+1}=a^{m+1}.b^{m+1}\cdots(2)$ $(ab)^{m+2}=a^{m+2}.b^{m+2}\cdots(3)$ Now consider equation (3) $(ab)^{m+2}=a^{m+2}.b^{m+2}$ $(ab)^{m+1}.(ab)^{1}=a^{m+1}.a.b^{m+1}.b$ $a^{m+1}.b^{m+1}.ab=a^{m}.a.a.b^{m+1}.b$ $a^{m}.b^{m+1}.a=a^{m}.a.b^{m+1}.b$ $a^{m}.b^{m}.b.a=a^{m}.a.b^{m}.b$ $\Rightarrow (ab)^{m},ba=(ab)^{m}.a.b$ $\Rightarrow ba=ab$ (by L.C.L)

therefore (G, \cdot) is abelian

Order of an elements of a group :

- Let (G, .) be a group and a G then the order of the element a in G is defined as the least positive integer n such that aⁿ = e
- In case such a positive integer does not exist say that the order of `a' is infinite (or) zero
- The order of `a" is defined as o(a) or |a|

NOTE:

 $a^{m=e}$, m is a positive integer in G I O(a) \leq M

EXAMPLE: Consider the group $G=\{1,-1\}$ under usual multiplication. Find the order of each element in G. Solution: Given that $G=\{1,-1\}$ Clearly e=1 is the identify

```
Let a=1
(a)<sup>1</sup> =(1)<sup>1</sup>=1
(a)<sup>2</sup>=(1)<sup>2</sup>=1
(a)<sup>3</sup>=(1)<sup>3</sup>=1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
```

a=-1 (a)¹=(-1)¹≠ e (a)²=(-1)²=1 (a)³=(-1)³=-1≠ e (a)⁴= (-1)²=1 O (-1)=2

 $(a)^4 = (i)^4 = (i)^2 \cdot (i)^2 = (-1) (-1) = 1 = e$

Therefore O(-i)=4

PROBLEM :Find the order of each element in the multiplication group $G = \{1, -1\}$ 1,i,-i. **SOL**: Given that $G = \{1, -1, i, -i\}$ Clearly e=1 is the identity Let a=1 $(a)^{1} = (1)^{1} = 1$ $(a)^2 = (1)^2 = 1$ $(a)^{3} = (1)^{3} = 1$ Therefore O(1)=1Let a=-1(a)¹ =(-1)¹=-1≠e $(a)^2 = (-1)^2 = 1$ $(a)^3 = (-1)^3 = -1 \neq e$ $(a)^4 = (-1)^4 = 1$. O (-1)=2 Let a=i $(a)^{1} = (i)^{1} = i$ $(a)^2 = (i)^2 = -1$ $(a)^3 = (i)^3 = (i)^2 \cdot i = (-1)i = -i$ $(a)^4 = (i)^4 = (i)^2 \cdot (i)^2 = (-1)(-1) = 1 = e$ Therefore O(i)=4Let a=-i $(a)^{1} = (-i)^{1} = -i$ $(a)^2 = (-1)^2 = (-i)(-i) = i^2 = -1$ $(a)^3 = (i)^3 = (-i) \cdot (-i) \cdot (-i) = (-1) \cdot i = i$

PROBLEM: Find the order of each element of the group G { 1, ω , ω^2 } under usual multiplications

Solution: Given that G is ({ 1, ω , ω^2 }, ·) is a group clearly e =1 is the identity Let a=1 $(a)^1 = (1)^1 = 1 = e$ $(a)^2 = (1)^2 = 1 = e$ $(a)^{3} = (1)^{3} = 1 = e$ Therefore 0(1)=1Let $a = \omega$ $(a)^1 = (\omega)^1 = \omega^1$ $(a)^2 = (\omega)^2 = \omega^2$ $(a)^3 = (\omega)^3 = \omega^3 = 1 = e$ Therefore $0(\omega) = 3$ Let $a = \omega^2$ $(a)^{1} = (\omega^{2}\omega)^{1} = \omega^{2}$ $(a)^{2} = (\omega^{2})^{2} = (\omega^{4} = \omega^{3}. \omega = 1. \omega = \omega$ $(a)^{3} = (\omega^{2})^{3} = (\omega^{3})^{2} = (1)^{2} = 1 = e$ Therefore $0(\omega^2) = 3$

NOTE :

(1) $+_n$ = addition modulo "n", $n \in \mathbb{Z}^+$ $a+_n b$ = reminder when a+b is divisible by 'n" example : 2+2 3=1, 9+3 1=1, 3+3 3=0, 8+2 6=0, 2+4 5=3

(2) X_n = multiplication modulo `n", $n \in \mathbb{Z}^+$

 aX_nb = reminder when $a^{\times}b$ is divisible by `n'

example: 5x₂6=0, 3x₃3=0, 5x₃ 3=0.

(3) In additive notation $,na=c \rightarrow O(a)=n$.

PROBLEM :Find the order of each element of the group $Z_6=\{0,1,2,3,4,5\}$ under the composition being addition modulo $6(\text{or}) +_6$ Sol: Given that $(Z_6, +_6)$ is a group clearly

e=0 is the identity

DEFINITION:

Let a,b, ϵ_z , we say that a/b (a divides b), if b = a.q for some $q \epsilon_z$ Example : (1) 2|6 Here a=2,b=6 alb if b=a.q (2) 2|7 Here a=2, b=6 alb if b=a.q $7 \neq 2(q)$, $q \epsilon_z$

Division algorithm :

If a,b, $\stackrel{\leftarrow}{=}$ z and a≠0 then there exist ([∋]) a unique integer `q" and `r" such that b=a.q +r. Example : 2|7=7=2.(3)+1.

THEOREM : If in a group G , a $\stackrel{\leftarrow}{G}$ such that 0(a) , then $a^m = e \square n/m$

```
PROOF: Given that G is a group and a \in G
Since O(a) = n
Aleast a positive integer such that a^n = e.....(1)
Assume that a^m = e
Claim :nlm
By division algorithm M = n.q+r... (2)
a^m = a^{n.q}+r
= a^{n.q}+a^r =>a^{n.q+r}
= (a^n)^{q.a^r}
= 1 \cdot a^r
a^m = e, 0 \le r < n
if r>0 then O(a) = r
```

```
which is a contradiction to O(a) n
r>0
r=0
from (2) ,m =n=>nlm
conversely suppose that nlm
m=n \cdotq for some q \in
CLAIM: a<sup>m</sup>=e
a<sup>n</sup>=a<sup>nq</sup>
=(a<sup>n</sup>)<sup>q</sup>
```

```
=e^{q}=e
```

WELL ORDERING PRINCIPLE:

Every non empty set of positive integer has a least element (number) **THEOREM :** Show that the order of each element in a finite group is finite and is less than are equal to the order of a group

```
PROOF: Let G be a finite group and a \in G
CLAIM : O(a) is finite
Since a, a \in G, \cdot is a binary in G
a^2 \in \mathbf{G}
a<sup>3</sup>€G
By induction, a^n \in G \forall n
       a^1, a^2, \dots a^n \in G
since G is finite
let a^s = a^r for some r, s \in z^+, r > s
a<sup>s</sup>.a<sup>-s</sup>=a<sup>r</sup>.a<sup>-s</sup>
                   \Rightarrow a^{s-s} = a^{r-s}
                   \Rightarrow a^{0} = a^{r-s}\Rightarrow a^{r-s} = e, \text{ where } r-s \in z^{+}
                        let s = \{ a^m = e/m \in z^+ \} where r-s=m
                   \Rightarrow s \neq \phi
                        from Well ordering prinicipe, s has a least number say `n"
                        Therefore n is the least positive integer \exists a^n = e
                        0(a) is finite
                        0(a) \le 0(G) :
                        Suppose that O(a) \leq O(G)
                   \Rightarrow 0(a) . 0(G)
                   \Rightarrow Let O(a)=n then n >O(G)
```

- \Rightarrow Since $a^1, a^2, \dots a^n$ are an distinct
- \Rightarrow O(G) =n
- ⇒ n>n

 \Rightarrow which is contradiction $O(a) \le O(G)$

COMPOSITION TABLE :

(1) Let $G = \{1, -1, i, -i\}$ the G is a group

•	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	1
Ι	Ι	-i	-1	1
-i	-i	i	1	-1

BINARY / CLOSURE LAW:

Since all that entries (elements) of the table are the elements of G ASSOCIATIVE LAW :

(a.b) .c =a (bc) \forall a,b,c \in G

EXISTENCE OF IDENTITY:

Since the top row is indentical with the row corresponding to 1 **EXISTENCE OF INVERSE :**

Inverse of 1=1

Inverse of -1=-1

Inverse of i=-1

Inverse of -i = i

Therefore G is a group.

(2)Let G = { $1, \omega, \omega^2$ } then G is a group

•	1	Ω	ω ²
1	1	Ω	ω ²
ω	ω	ω^2	1
Ω	ω ²	1	ω

(1) **BINARY /CLOSURE LAW:**

Since all the existence (elements) of the table are the elements of G (2) Associative law :

 $(a,b).c=a.(b.c) \forall a,b,c \in G$

(3) EXISTENCE OF IDENTITY :

Since the top row is identical with the row corresponding to 1 (4)EXISTENCE OF INVERSE :

Inverse of 1=1

Inverse of $\omega = \omega^2$

Inverse of $\omega^2 = \omega$

Therefore G is a group

1.) Write down the binary operation table for which addition modulo $6(+_6)$ of the set $z_6 = \{0, 1, 2, 3, 4, 5\}$

Given that $z_6 = \{ 0, 1, 2, 3, 4, 5 \}$

(Z6	•	+6)
(20	•	107

(20, 10)						
+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

2.)Write down the binary operation table for which x_4 (multiplication modulo 4) of the set $z_4 = \{ 0,1,2,3 \}$.

Given that $z_4 = \{ 0, 1, 2, 3 \}$. (z_4, x_4)

X4	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

3.) Write down the binary operation table for which user multiplication table for which user multiplication of the Set $a = \{1, -1\}$

•	1	-1
1	1	-1
-1	-1	1

UNIT II

Sub Groups

COMPLEX:

Any subset of a group G is called a complex of G.

Example : 2z is of complex of z

NOTE:

(1) If M , N are complex's of a group G then $(M.N)^{-1} = N^{-1}$. M^{-1}

(2) If H is a complex of G then $H^{-1} = \{ h^{-1}/h \in H \}$

SUB GROUP:

Let G be a Group . A non empty Complex H of a Group G is said to be a Subgroup of G if H is a group with respect to the operation `.'(dot) in G .

Ex:

(1) (2z, +) is a sub group of (z, +)

(2)(z,+) is a sub group of (Q,+)

(3) (Q,+) is a sub group of (R,+)

NOTE :

(1) If H is a Subgroup of G then the identity element in H and G are same .Ex:

`0' is the identity in z with respect to the SubGroup of 2Z of Z ,0 is the identity element in 2z.

(2) If H is a SubGroup of a group G and a∈G then the inverse of a in G is same as the inverse of a in H

Ex:

-z is the common inverse of z in both z and 2z

NOTE:

(1) If H is any sub group G then $H^{-1}=H$

- (2) H is a sub group of a group $G \Leftrightarrow HH^{-1}=H$
- (3) If H is any subgroup of a group G then H.H =H

THEROEM:

If H and K are two subgroups of a group G, then HK is a subgroup of G \Leftrightarrow HK =KH

PROOF:

Given that H and K are two subgroups of a group G

NECESSARY CONDITION:

 \Rightarrow Suppose that H.K is a subgroups of G

CLAIM: HK=KH

By known theorem $(HK)^{-1} = HK$

 $=>K^{-1} H^{-1}=HK$ =>KH =HK=>HK =KH

SUFFICIENT CONDITION:

Suppose that HK=KH

CLAIM: HK is a subgroup of G

Consider (HK) $(HK)^{-1} = (H K) (K^{-1}.H^{-1})$

 $= H (K K^{-1}H^{-1})$ $= H(K K^{-1})H^{-1}$ $= (HK) H^{-1}$ $= (KH) H^{-1}$ $= K(H H^{-1})$ = KH= HK

Therefore HK is a subgroup of group G.

THEROEM :

A non empty set complex H is a SubGroup of G

 $\Leftrightarrow (1) a, b \in H \Rightarrow a.b \in H$

(2) $a \in H \Rightarrow a^{-1} \in H$.

PROOF:

NECESSARY CONDITION:

Suppose that H is a SubGroup of G

CLAIM: (1) and (2) holds

Since $(H \cdot)$ its self a group

(1)For a,b \in H

 $\mathbf{a}.\mathbf{b}\in H$

for a \in H,H is a group

 $=>a^{-1} \in H.$

SUFFICIENT CONDITION:

Suppose that (1) $a, b \in H \Rightarrow a.b \in H$

(2) $a \in H \Rightarrow a^{-1} \in H$

CLAIM : H is a SubGroup of a group G i.e, to prove that (H, \cdot) itself a group

ASSOCIATIVE ; Let $a,b,c \in H$

 \Rightarrow a,b,c ∈ *G* \Rightarrow (a.b).c= a.(b.c)

IDENTITY: Since $a \in H \Rightarrow a^{-1} \in H$

```
By (1) a, a^{-1} \in He \in H
```

Therefore (H, \cdot) itself is a group

Therefore H is a subgroup of G.

THEROEM :

A NON Empty Complex H is a SubGroup of a group $G \Leftrightarrow a, b \in H$ then $a, b^{\text{-1}} \in H$.

PROOF:

NECESSARY CONDITION:

Suppose that H is a SubGroup of a group (G.)

CLAIM :

 $a,b \in H \Rightarrow a,b^{-1} \in H$

Since $(H \cdot)$ itself is a group Let a,b \in H

 \Rightarrow a \in *H*, *b*⁻¹ \in

 $\Rightarrow a,b^{-1} \in H$

SUFFICIENT CONDITION:

suppose that

$$a,b \in H \Rightarrow a b^{-1} \in H \dots (1)$$

CLAIM:

H is SubGroup of G (i.e) we have to prove that (H.) itself a Group

(1) **ASSOCIATIVE** : Let $a,b,c \in H$

$$\Rightarrow a,b,c \in G$$

$$\Rightarrow (a.b).c = a.(b.c)$$

(2) **IDENTITY** : by (1) ,a, $a \in H \Rightarrow a.a^{-1} \in H$

 $\Rightarrow e \in H$

(3) **INVERSE** : By (1) $e, a \in H \Rightarrow e.a^{-1} \in H$

 $\Rightarrow a^{-1} \in H$

(4) **BINARY OPERATION**:

Let
$$a, b \in H$$

 $\Rightarrow a \in H, b^{-1} \in H$
by (1) $, a.(b^{-1})^{-1} \in H$
 $\Rightarrow a.b \in H$

Therefore (H, \cdot) itself is a group

Therefore H is a subgroup of G.

THEROEM:

IF H_1, H_2 are two SubGroup G then $H_1 \cap H_2$ is also a SubGroup of G .

PROOF :

Given that H_1 and H_2 are two SubGroups of a group G

CLAIM: $H_1 \cap H_2$ is a SubGroup of G

clearly e $\in H_1 \cap H_2$

 \Rightarrow H₁ \cap H₂ is a non empty subset

Let $a, b \in H_1 \cap H_2$

$$\Rightarrow$$
 a,b \in H_1 and a,b \in H_2

$$\Rightarrow$$
 a.b⁻¹ \in H_1 and a.b⁻¹ \in H_2

 \Rightarrow a.b⁻¹ \in $H_1 \cap H_2$

By known theorem,

 $H_1 \cap H_2$ is a subgroup of G

PROBLEM :

By an Example to show that the union of two Subgroup's of a group need not be a subgroup .

Solution:

consider 2z & 3z are two Subgroups' of a group (z,+)

Now $2z \cup 3z = \{0, \pm 2, \pm 3, \pm 4, \pm 6...\}$

Let $3,2 \in 2z \cup 3z$

 \Rightarrow 3+2=5 not belongs to 2z U 3z

Therefore $2z \cup 3z$ need not be a subgroup

THEROEM :

If H₁and H₂ are two subgroups of a group G, then $H_1 \cup H_2$ is a subgroup of G \Leftrightarrow $H_1 \subseteq H_2$ (or) $H_2 \subseteq H_1$

PROOF:

Given H_1 and H_2 are two subgroups of G

SUFFICIENT CONDITION:

Suppose $H_1 \subseteq H_2$ (or) $H_2 \subseteq H_1$

CLAIM:

 $H_1 \cup H_2$ is a subgroup of G

If $H_1 \subseteq H_2 \Rightarrow H_1 \cup H_2 = H_2$ is a SubGroup of G If $H_2 \subseteq H_1 \Rightarrow H_1 \cup H_2 = H_1$ is a SubGroup of G

Therefore $H_1 \cup H_2$ is a SubGroup of G

NECESSARY CONDITION:

Suppose $H_1 \cup H_2$ is a SubGroup of G

CLAIM :
$$H_1 \subseteq H_2$$
 (or) $H_2 \subseteq H_1$

If possible suppose that $H_1 \subsetneq H_2$ (or) $H_2 \subsetneq H_1$

Since $H_1 \subsetneq H_2 \Rightarrow \exists a \in H_1 \ni a$ not belongs to H_2

 $H_2 \subsetneq H_1 \Rightarrow \exists b \in H_2 \ni b \text{ not beings to } H_1$

Since a $\in H_1$, b $\in H_2 \Rightarrow$ a, b $\in H_1 \cup H_2$

 $\Rightarrow ab \in H_1 \cup H_2$ $\Rightarrow ab \in H_1 \text{ (or) } ab \in H_2$ Since $a^{-1} \in H_1$, $ab \in H_1$ $\Rightarrow a^{-1}(ab) \in H_1$ $\Rightarrow a^{-1} a.b \in H_1$ $\Rightarrow e.b \in H_1$ $\Rightarrow b \in H_1$

which is a contradiction to b does not belongs to H_1 similarly, we array a contradiction to a does not belongs to H_2 .

Therefore $H_1 \subseteq H_2$ (or) $H_2 \subseteq H_1$.

THEROEM:

A finite non empty complex H is a SubGroup of a Group G \Leftrightarrow a,b \in H for ab \in H

PROOF:

NECESSARY CONDITION:

Suppose that H is a SubGroup of a Group (G, \cdot)

i.e ,(H .) itself is a group

CLAIM: $a,b \in H \Rightarrow ab \in H$

Let a, $b \in H$

 $\Rightarrow a.b \in H$

SUFFICIENT CONDITION:

Let $a, b \in H$ -----(1) for $a, b \in H$

CLAIM: H is a subgroup of G

(1) from (1), . is a Binary operation on H

(2) ASSOCIATIVE LAW:

Let a,b,c $\in H$

 \Rightarrow a,b,c $\in G$

 \Rightarrow a.(bc)=(ab).c

(3) **IDENTITY** : Let $a \in H$

Since a, $a \in H \Rightarrow a^2 \in H$ $a^3 \in H$

•

 $a^{n} \in H$ for $n \in z^{+}$ Let $a^{r}=a^{s}$ for some $r, s \in z^{+}, r>s$ $\Rightarrow a^{r}.a^{-s}=a^{s}.a^{-s}$ $\Rightarrow a^{r-s}=a^{s-s}$ $\Rightarrow a^{r-s}=a^{\circ}=e$ $\Rightarrow a^{r-s}=e$ $\Rightarrow e \in H$

(4) **INVERSE** : Let $a \in H$

Clearly r-s-1 $\in z^+ \Rightarrow a^{r-s-1} \in H$ Also $a^1.(a^{r-s-1}) = a^{r-s} = e$ Therefore $a^{r-s-1} \in H$ is the inverse of `a' Therefore H itself a group Therefore H is a subgroup of G

NORMALIZER OF AN ELEMENT IN A GROUP :

If G is a group and $a \in G$ then the set N (a) ={x $\in G / ax = x a$ } is called the NORMALIZER of `a' in G.

CENTRAIZER (OR) CENTRE OF A GROUP:

If G is a Group then the set Z (G) (or) Z={ $a \in G/ax=xa \in G$ } is called Centre of a Group .

THEROEM:

Show that N(a) of `a' is a sub group of G.

PROOF:

CLAIM: N (a) is a subgroup of G

Let
$$a \in G$$

Since $a \cdot e = e \cdot a$
 $\Rightarrow e \in N(a)$
Therefore N (a) $\neq \emptyset \subseteq G$
(1) Let x, y $\in N$ (a)
 $\Rightarrow a x = xa, ay = y a$
Now (x y) $a = x$ (y a)
 $= x (ay)$
 $= (x a) y$
 $= (ax) y$
(x y) $a = a(x y)$
 $\Rightarrow x y \in N(a)$

(2) Let
$$x \in N(a)$$

$$\Rightarrow x a=ax$$

$$\Rightarrow x^{-1}(x a)x^{-1}=x^{-1}(ax)x^{-1}$$

$$\Rightarrow (x^{-1}x) a x^{-1}=x^{-1}a (x x^{-1})$$

$$\Rightarrow e. a. x^{-1}=x^{-1}.a.e$$

$$\Rightarrow .a. x^{-1}=x^{-1}.a$$

$$\Rightarrow x^{-1} \in N$$
 (a)

Therefore N(a) is a SubGroup of G.

THEROEM:

Show that the centre Z(G) is a subgroup of G

PROOF:

Let $Z = \{a \in G | ax = xa \forall x \in G \}$

CLAIM: Z is a SubGroup of G

Let $x \in G$ Since x. e = e . x $\Rightarrow e \in Z$

Therefore $Z \neq \emptyset \subseteq G$

(1) Let $a, b \in Z$

$$\Rightarrow a x=xa; bx=x b$$
Now (a b) x=a (b x)
$$= a(x b)$$

$$= (ax) b$$
(a b)x =(x a)b
(a b)x = x(a b)
$$\Rightarrow ab \in Z$$

(2) Let $a \in Z$

$$\Rightarrow x a=a x$$

$$\Rightarrow a x=x a$$

$$\Rightarrow a^{-1}(ax) a^{-1}=a^{-1}(x a) a^{-1}$$

$$\Rightarrow (a^{-1}a) (xa^{-1}) = a^{-1}x (aa^{-1})$$

$$\Rightarrow e.xa^{-1}=a^{-1}x.e$$

$$\Rightarrow xa^{-1}=a^{-1}x$$

$$\Rightarrow a^{-1} \in Z$$

Therefore Z is a subgroup of G.

COSETS AND LAGRANGE'S THEOREM:

DEFINITION:

Let H be a subgroup of a group G and $a\in G$ then this set $a.H = \{a.h/h \in H\}$ is called left coset of H in G & the set H.a = $\{h.a /h\in H\}$ is called Right coset of H in G.

NOTE:

If H is a subgroup of an abelian group G then a.H=H.a.

i.e , every left coset is a right coset .

RESULT:

Let H be a subgroup of G and a, $b \in G$

Then

```
(1) a \in H \Leftrightarrow a.H = H
```

```
a \in H \Leftrightarrow H.a = H
```

$$(2)a\in Hb \Leftrightarrow H.a=H.b$$

 $a \in bH \Leftrightarrow a.H = b.H$

$$(3)$$
H.a =H.b \Leftrightarrow a.b⁻¹ \in H

 $a.H = b.H \Leftrightarrow a^{-1}.b \in H$

THEROEM:

Any two left cosets of a subgroup of a group are either disjoint (or) identical .

PROOF:

Let H be a subgroup of a group G and $a,b\in G$.

Let aH,bH be two left cosets of H in G

CLAIM :

aH ∩ bH =Ø (or) aH=bH Suppose that aH∩bH ≠Ø To prove that aH =bH Let c∈aH∩bH ⇒c∈ aH and c∈bH ⇒cH =aH and cH= bH ⇒aH=cH=bH ⇒aH=bH

Therefore aH and bH are identical.

THEROEM:

Any two right cosets of a subgroup of a group either disjoint (or) identical .

PROOF:

Let H be a subgroup of a group G and $a,b\in G$

Let Ha,Hb be two Right cosets of H in G

CLAIM: $Ha \cap Hb = \emptyset$

Suppose that $Ha \cap Hb \neq \emptyset$

To prove that Ha =Hb

Let $c \in Ha \cap Hb$

 \Rightarrow c \in Ha and c \in *Hb*
⇒Hc=Ha and Hc=Hb

⇒Ha=Hc=Hb

⇒Ha=Hb

Therefore Ha and Hb are identical.

THEROEM:

If H is any subgroup of a group G then there exists a bijection between any two left cosets of H in G .

PROOF:

Given that H is a subgroup of a G and $a, b \in G$.

Let aH,bH be two left cosets of H in G

Define f: $aH \rightarrow bH$ by (ah) = bh, for $ah \in aH$

f is one --one:

Let $ah_{1,ah_2} \in aH$ for $h_1, h_2 \in H$

Consider $f(ah_1) = f(ah_2)$

```
\Rightarrow bh_1 = bh_2
```

 $\Rightarrow h_1 = h_2$

 $\Rightarrow ah_1 = ah_2$

f is on -to:

```
Let bH \inbH

\Rightarrow h\inH

\Rightarrow a\cdoth \in aH

by (1), f(ah) =bh
```

Therefore, f is onto

Therefore, $f:aH \rightarrow bH$ is a bijection.

NOTE:

By above theorem , concludes that any two left (right) cosets have the same no.of elements

THEROEM:

If H is a subgroup of a group G then there is a one to one correspondece between the set of all distinct left cosets of H inG and the set of all disrinct Right cosets of H inG.

PROOF:

Let G_1 =set of all distinct left cosets of H in G .

 G_2 = Set of all distinct Right cosets of H in G

Define f:G₁ \rightarrow G₂ by f(aH) =H.a⁻¹, for aH \in G

f is well defined and one-one :

```
Let aH, bH \in G_1
Let aH = bH
\Leftrightarrow a^{-1} \cdot b \in H
\Leftrightarrow a^{-1}[(b^{-1})]^{-1} \in H
\Leftrightarrow Ha^{-1} = Hb^{-1}
\Leftrightarrow f(aH) = f(bH).
```

f is onto :

Let $Ha \in G_2$ $\Rightarrow a \in G$ $\Rightarrow a^{-1} \in G$ $\Rightarrow a^{-1} \cdot H \in G$, Therefore $f(a^{-1}H) = H(a^{-1})^{-1}$ [by (1)] = HaTherefore f is onto Therefore f:G₁ \rightarrow G₂ is a bijection

THEROEM :

State and Prove Lagrange's Theorem.

STATEMENT :

If H is a subgroup of a finite group G then O(H) | O(G)

PROOF:

Given that H is a subgroup of a finite group G

 \Rightarrow H is finite & the no.of right cosets of H in G is finite

Let Ha_1, Ha_2, \ldots, Ha_k be the distinct right cosets of H in G.

We know that every Right cosets of

 $O(Ha_1)=O(Ha_2)=\ldots=O(Ha_k)=o(H)$

Since G is finte, the right cosets partitions into equivalence classes.

Therefore $G = Ha_1 \cup Ha_2 \cup ... \cup Ha_k$

$$\Rightarrow O(G) = O[Ha_1 \cup Ha_2 \cup ... \cup Ha_k]$$

$$=O(Ha_1)+O(Ha_2)+\ldots+O(Ha_k)$$

- \Rightarrow O(G)=O(H) +O(H)+...[K times]
- \Rightarrow O(G) =O(H).k
- $\Rightarrow O(H) \mid O(G).$

UNIT : III

Normal Subgroups

Definition:

A Subgroup H of a Group G is said to be Normal in G if x h x $^{-1}$ ε H, \forall h ε H , x ε G

(or)

X H $x^{-1} \subseteq$ H $\forall x \in$ G and it is denoted by H α G

Theorem :

Show that Every Subgroup of an abelian group is Normal

Proof: let H be a Subgroup of an abelian group G

Claim : H α G

Let $h \in H$, $x \in G$ $x h x^{-1} = (hx)x^{-1}$ $=h(xx^{-1})$ =he $\therefore x h x^{-1}$ $\therefore x h x^{-1} \in H$

There fore H α G

Theorem :

A Subgroup H of a Group G is Normal in $G \Leftrightarrow xHx^{-1}=H$, $\forall x \in G$

(or)

H α G \Leftrightarrow x H x¹= H, \forall xeG

Proof :

Necessary condition : let $H \alpha G$

By definition $x Hx^{-1} \subseteq H$ ------(i) $\forall x \in G$ Claim : $x H x^{-1}=H \forall x \in G$ From (i) $x^{-1}H (x^{-1})^{-1} \subseteq H \forall$ $X (x^{-1}H x) x^{-1} \subseteq x H x^{-1}$ ($x x^{-1}$) H($x x^{-1}$) $\subseteq x H x^{-1}$ $e (H x) x^{-1} \subseteq x H x^{-1}$ $H (x x^{-1}) \subseteq x H x^{-1}$ $H e \subseteq x H x^{-1}$ $H \subseteq x H x^{-1} \forall x \in G$ ------(ii) From (i) and (ii) $x H x^{-1}=H, \forall x \in G$

Sufficiant Condition :

Suppose that x H x⁻¹=H-----(iii) $\forall x \in G$

Claim : H αG

From (iii) it is clear $x H x^{-1} \subseteq H \forall x \in G$ There fore $H \alpha G$

Theorem :

A Subgroup H of a group G is Normal in G \Leftrightarrow Each left coset of H in G is a right coset of H in G

Proof :

Necessary condition :

Let H α G

Claim: Each left coset is a right coset of H in G

By known theorem $x H x^{-1} = H \forall x \in G$ $\Rightarrow x H x^{-1} x = H x$ $\Rightarrow x H e = H x$ $\Rightarrow x H = H x, \forall x \in G$

Therefore Each left coset is a right coset of H in G

Sufficiant condition :

Suppose that Each left coset is right coset of H in G

That is $X H = H X \dots(i)$

Claim : $H \alpha G$

From (i) ,XH=HX

 \Rightarrow X H X⁻¹ = H X X⁻¹

 \Rightarrow X H X⁻¹ = He

$$\Rightarrow X H X^{-1} = H, \forall x \in G$$

There fore H α G

Theorem :

A Subgroup H of a group G is a Normal Subgroup of $G \Leftrightarrow$ The product of two right cosets of H in G is again a right coset of H in G

Proof :

Neccessary Condition :

Let $H \alpha G$

Claim : Let $a,b,ab \in G$

 \Rightarrow Ha,Hb,Hab \in G are right cosets of H in G

Consider (Ha) (Hb) =H (aH) b

=H (Ha) b

=(HH) ab

=Hab is a right coset

 $\div\,$ The product of two right cosets of H in G is again a right coset of H in G

Sufficiant condition :

```
Let (Ha) (Hb) = Hab..... (i)
```

Claim : H α G

Let $x \in G$, $h \in H$

Consider $xhx^{-1} = (ex) h x^{-1} \in Hx H x^{-1}$

```
{}^{=}H \ge x^{-1}
```

```
= He
```

=H

 \Rightarrow x h x⁻¹ \in H

: By definition, H is a Normal Subgroup of G

also

Theorem:

Show that the intersection of two Normal Subgroups of a group G is again a Normal Subgroup of G

proof :

Let H and K be two Normal Subgroups of group G

Claim : $H \cap K \alpha G$

Clearly $H \cap K$ is a subgroup

Let $x \in G$, $h \in H \cap K$ $\Rightarrow x \in G$, $h \in H$ $\Rightarrow x h x^{-1} \in H$(i) $x \in G$, $h \in K$ $\Rightarrow x h x^{-1} \in K$(ii) From (i) and $\therefore x h x^{-1} \in H \cap K$

$$\cdot$$
 H \cap K α G

Simple group :

A Group G is said to be Simple if it has no proper Normal Subgroups

Note :

G is Simple if and only if G has no Normal Subgroups other than G and $\{e\}$

Theorem:

Prove that Every group of prime order is simple

Proof:

0

Let G be a Group of Prime order P

Let N be a Normal Subgroup of G

By Lagrange's theorem

O(N) / O(G) $\Rightarrow O(N) / P$ $\Rightarrow O(N) = 1 (or) O (N) = P$

If O(N) = 1, then $N = \{e\}$

If O(N) = P, then N = G

∴G has no Proper Normal Subgroups and hence, G is Simple

Hence, Every Group of Prime Order is Simple

UNIT -4

HOMOMORPHISMS

DEFINITIONS:-

HOMOMORPHISM: - Let G,G' be two groups. A mapping f: G \rightarrow G' is called a "**Homomorphism**" if f(ab)=f(a) · f(b) \forall a,b∈G.

HOMOMORPHIC IMAGE :- If $f:G \rightarrow G'$ is a homomorphism then the set $f(G)=\{f(a)/a \in G\}$ is called a "Homomorphic Image Of G".

MONOMORPHISM: - A mapping $f:G \rightarrow G'$ is called a "**Monomorphism**"

if (I) f is homomorphism (II) f is 1-1.

EPIMORPHISM: - A mapping $f:G \rightarrow G'$ is called a "**Epimorphism**" if

(i)f is homomorphism and (ii)f is onto.

Isomorphism: - A mapping f: $G \rightarrow G'$ is called an **"Isomorphism"** if (i) f is homomorphism and (ii) f is both 1-1 and onto.

Endomorphism: - A homomorphism f: $G \rightarrow G$ is called an **"Endomorphism"**.

Automorphism :- A mapping f: $G \rightarrow G$ is called an "Automorphism" if (i) f is homomorphism (ii) f is both 1-1 and onto.

Isomorphic: - Two graphs G and G' are said to be **"isomorphic"** if there exists an isomorphism of G and G' we write G≈G'.

Theorem:-_Let (G, \cdot) and (G', \cdot) be two groups Let f be a homomorphism from G onto G' Then (i)f(e)=e' where e be the identity in G and e' be the identity in G' (ii)f(a^{-'})={f(a)}.^{-'}

Proof:- Given that (G, \cdot) and (G', \cdot) be two groups and f:G \rightarrow G' is a homomorphism.

i.e., $f(ab)=f(a).f(b) \forall a \in G$

(i)To prove f(e)=e

$$\Rightarrow$$
 f(e).f(e)=f(e).e'

 \Rightarrow f(e)=e'

ii) To prove f(a⁻') = (f(a))⁻'

 $= f(e). \qquad By(i) f(e)=e'$ = e' $\Rightarrow f(a^{-'}).f(a) = e'$ Therefore $f(a^{-'})=(f(a))^{-'}$

i.e The inverse of $f(a^{-1})$ is f(a).

Theorem :- If f is a homomorphism from a group (G, \cdot) into (G', \cdot) Then

(f(G), \cdot) Is a subgroup of G' (or) the homomorphic Image of a group is a group.

Proof:- Given that f: $G \rightarrow G'$ is a homomorphism

The homomorphic Image of G is $f(G)=\{f(a)/a\in G\}$

To Prove that f(G) is a subgroup of G

Clearly $f(G) \subseteq G'$

Let $a', b' \in f(G)$

Then there exists $a,b \in G$ such that f(a)=a' and f(b)=b'

Now a' (b')⁻' = f(a) \cdot (f(b))⁻' = f(a) \cdot f(b⁻') = f(ab⁻') \in f(G) \Rightarrow a'(b')⁻' \in f(G) Therefore a',b' \in f(G)' Then a'(b')⁻' \in f(G) \therefore f(G) is a subgroup of G'

Theorem:- Every Homomorphic Image of an abelian group is abelian.

Proof:- Let (G, \cdot) be an abelian group and (G', \cdot) be a group

Let $f:G \rightarrow G'$ be a homomorphism

Let G' be the homomorphic Image of G i.e G'=f(G)

To prove that G' is abelian

Since G is abelian \Rightarrow ab=ba for a, b \in G

Let a'b'∈G'

Then there exists $a,b\in G \ni f(a)=a'$ and f(b)=b'

= f(ba) = f(b) · f(a) = b'a' ⇒a'b'= b'a'

Therefore G' is abelian

Kernel of a homomorphism:-

If f is a homomorphism of a group G into a group G' then the kernel of f is defined by Ker $f={x\in G/f(x)=e'}$ where e' is the identity in G'.

Theorem: - If f is a homomorphism of a group G into a group G' then the kernel of f is a normal subgroup of G.

Proof:- Given that G and G' are two groups

Also $f:G \rightarrow G'$ be a homomorphism

To prove that ker f is a normal subgroup of G we know that

Ker $f={x \in G/f(x)=e'}$ where e'is the identity in G'

Since $e \in G \Rightarrow f(e)=e'$, $e \in ker f$

⇒ker f≠Ø⊆G

First we Prove ker f is a subgroup of G

Let a,b∈ ker f

 \Rightarrow f(a)=e' and f(b)=e'

Now $f(ab^{-'}) = f(a) \cdot f(b^{-'})$

 $= f(a) \cdot (f(b))^{-1}$

$$= e'.(e')^{-'}$$
$$= e'.e'$$
$$= e'$$
$$\Rightarrow f(ab^{-'})=e'$$
$$\Rightarrow ab^{-'} \in \ker f$$

Therefore ker f is a subgroup of G.

Now we Prove ker f is normal

```
Let x \in G and a \in \ker f \Rightarrow f(a) = e'

Now f(xax^{-'}) = f(x)f(a)f(x^{-'})

= f(x).e'.f(x^{-'})

= f(x).f(x^{-'})

= f(e) = e'

\Rightarrow f(xax^{-'}) = e'

\Rightarrow xax^{-'} \in \ker f
```

 \div ker f is a normal subgroup of G.

Theorem: - The necessary and sufficient condition for a homomorphism f of a group G onto group G' with kernel K to be an isomorphism of G into G' is that k={e}.

Proof: - Let f be a homomorphism of a group G onto a group G'.

Let e,e' be the identities in G,G' respectively.

Let k be the kernel of f.

i.e., K = Ker f = {x∈G/f(x)=e'}

Suppose $f:G \rightarrow G'$ is an isomorphism

To prove that k = {e}.

Let a∈k

$$\Rightarrow$$
f(a)=f(e)

 \Rightarrow a=e for a \in G

Therefore e is the only element of k

 \Rightarrow K = {e}

Conversely, suppose K = {e}

To Prove that f is an isomorphism.

Since f is onto homomorphism.

To prove f is one-one

Let a,b∈G

f(a) = f(b)

$$\Rightarrow f(a)(f(b))^{-'} = f(b) (f(b))^{-'}$$
$$\Rightarrow f(ab^{-'}) = e$$
$$\Rightarrow ab^{-'} \in K = \{e\}$$
$$\Rightarrow ab^{-'} = e$$

 \Rightarrow a = b

∴ f is one-one

Therefore f is an Isomorphism of G onto G'.

Theorem:- Let f be a homomorphism of a group G into G' then f is Monomorphism \Leftrightarrow ker f ={e} where e is the identity in G.

Proof :- Let f be a homomorphism of a group G into G'

```
We Know that Ker f={x∈G/f(x)=e'}

Suppose f: G→G' is Monomorphism

To Prove that ker f={e}

Let a∈ker f

⇒ f(a) = e'.

⇒ f(a) = f(e)

⇒a = e for a∈G

∴ e is the only element of ker f

⇒ ker f={e}

Conversely, suppose ker f={e}

To prove that f is Monomorphism

Since f is homomorphism.
```

To prove f is one-one.

Let a,b∈G

f(a)=f(b)

$$\Rightarrow f(a) \cdot (f(b))^{-1} = f(b) \cdot (f(b))^{-1}$$
$$\Rightarrow f(a)f(b^{-1}) = e$$
$$\Rightarrow f(ab^{-1}) = e$$
$$\Rightarrow ab^{-1} \in k = \{e\}$$
$$\Rightarrow ab^{-1} \in k = \{e\}$$
$$\Rightarrow ab^{-1} = e$$
$$\Rightarrow ab^{-1} = e$$
$$\Rightarrow ab^{-1} = eb$$
$$\Rightarrow ae = b$$
$$\Rightarrow ae = b$$
$$\Rightarrow a = b$$
$$\therefore f \text{ is one-one}$$

 \therefore f is an monomorphism of G into G'.

Theorem:- Let G be a group and N be a normal subgroup of G. Let f be a mapping from G to G/N defined by f(x)=Nx for $x\in G$. Then f is a homomorphism of G onto G/N and ker f = N

Proof:- Given that G is a group and N is a normal subgroup of G.

Let f be a mapping from G to G/N defined by $f(x)=Nx \rightarrow (1)$ for $x\in G$.

(i) f is a homomorphism :-

Let $a,b \in G$ $f(ab) = Nab \therefore by(1)$ $= Na \cdot Nb \quad (\because Ha \cdot Hb = Hab)$ = f(a).f(b) \Rightarrow f(ab) = f(a).f(b)

Therefore f is a homomorphism.

(ii) f is onto :-

Let $Nx \in G/N$ for $x \in G$

Since $x \in G$

Now
$$f(x)=Nx$$
 \therefore by (1)

 \therefore f is onto

(iii) ker f=N :-

The identity of the quotient group G/N is N

 $\Rightarrow \ker f = \{x \in G/f(x) = N\}$ Let k ∈ ker f $\Rightarrow f(k) = N$ By (1) f(k) = Nk $\Rightarrow N = Nk$ $\Rightarrow k \in N$ $\Rightarrow \ker f \subseteq N \rightarrow (1) \quad (H = hH, h \in H)$ Let n ∈ N We have f(n) = Nn = N $\Rightarrow f(n) = N$ $\Rightarrow n \in \ker f$ $\Rightarrow N \subseteq \ker f \rightarrow (2)$

From (1) and (2) we get ker f = N

Definition: - The mapping $f:G \rightarrow G/N$ such that f(x)=Nx for all $x \in G$ is called Natural (or) "canonical homomorphism".

PROBLEM:

 If for a group G, f:G→G is given by f(x)=x² ∀ x∈G is a homomorphism then prove that G is abelian.

Proof : Given that $f:G \rightarrow G$ is a homomorphism and is defined by

$$f(x)=x^2 \forall x \in G$$

To Prove G is a abelian
Let x,y \in G \Rightarrow $f(x)=x^2, f(y)=y^2$
 $xy \in$ G \Rightarrow $f(xy)=(xy)^2$
 \Rightarrow $f(x) \cdot f(y)=(xy)(xy)$
 $\Rightarrow x^2 \cdot y^2=(xy)(xy)$
 $\Rightarrow (x \cdot x)(y \cdot y)=(xy)(xy)$
 $\Rightarrow x (xy)y=x(yx)y$
 $\Rightarrow xy=yx$
 \therefore G is abelian.

Theorem: - Let G be a multiplicative group and $f:G \rightarrow G$ be a mapping such that for $a \in G$, $f(a)=a^{-1}$ then prove that f is one-one onto. Also prove that f is a homomorphism iff G is commutative

Proof:- Given that $f:G \rightarrow G$ is a mapping defined by $f(a)=a^{-1}$ for all $a \in G$

(i) f is one –one :- Let a,b∈G

$$f(a) = f(b)$$

 $a^{-'} = b^{-'}$
 $(a^{-'})^{-'} = (b^{-'})^{-'}$
 $a = b$

 \therefore f is one - one

(ii) <u>f is onto</u> :- Let x∈G

Then $x^- \in G$ such that $f(x^-) = (x^-)^{-1}$

= x ⇒ $f(x^{-'}) = x$ ∴ $\exists x^{-'} \in G \ni f(x^{-'}) = x$ ⇒ f is onto

(iii) Suppose f is a homomorphism :-

To prove G is commutative
Let a, b
$$\in$$
G \Rightarrow f(a)= a^{-'}, f(b)=b^{-'}
Since f(ab)= f(a) · f(b)
 \Rightarrow (ab)^{-'} = a^{-'} · b^{-'}
 \Rightarrow (b^{-'}a^{-'}=a^{-'} · b^{-'}
 \Rightarrow (b^{-'}a^{-'})^{-'}=(a^{-'}b^{-'})^{-'}
 \Rightarrow (b^{-'})^{-'}(a^{-'})^{-'}=(a^{-'})^{-'}(b^{-'})^{-'}
 \Rightarrow ba = ab
 \Rightarrow ab = ba

Conversely, suppose G is commutative

i.e. a,b \in G \Rightarrow ab=ba

To prove f is a homomorphism

Now f(ab)=(ab)^{-'} $= b^{-'}a^{-'}$ $= a^{-'}b^{-'}$ $= f(a) \cdot f(b)$ $\Rightarrow f(ab) = f(a) \cdot f(b)$

Fundamental theorem of homomorphism of groups:-

Statement:-If f:G \rightarrow G' is a homomorphism and onto with kernel K, then Prove that G/K \approx G'.

OR

Every homomorphism Image of a group G is "Isomorphic" to some "quotient group" of G.

Proof:- Let f be a homomorphism of a group G onto group G'.

Then f(G)=G

 \Rightarrow K is a normal subgroup of G.

 \Rightarrow G/K is a quotient group.

for $a \in G$, $Ka \in G/K$ and $f(a) \in G'$

Now Define a mapping $\emptyset : G/K \rightarrow G'$ by $\emptyset(Ka)=f(a)$ for $a \in G$

ø is well defined:-

Let Ka,Kb∈G/K

Now Ka = Kb

$$ab^{-'} \in K$$

$$\Rightarrow f(ab^{-'}) = e'$$

$$\Rightarrow f(a) \cdot f(b^{-'}) = e'$$

$$\Rightarrow f(a) \cdot (f(b))^{-'} f(b) = e'f(b)$$

$$\Rightarrow f(a) e' = e' f(b)$$

$$\Rightarrow f(a) = f(b)$$

$$\Rightarrow \emptyset(Ka) = \emptyset(Kb)$$

∴ Ø is well defined

......

Ø is one-one :-

Let Ka,Kb
$$\in$$
 G/K
 $\varnothing(Ka)= \varnothing(Kb)$
 $\Rightarrow f(a) = f(b)$
 $\Rightarrow f(a) e' = e'f(b)$
 $\Rightarrow f(a) \cdot (f(b))^{-'} f(b) = e' f(b)$
 $\Rightarrow f(a) \cdot (f(b))^{-'} = e'$
 $\Rightarrow f(a) \cdot f(b^{-'}) = e'$
 $\Rightarrow f(ab)^{-'} = e'$
 $\Rightarrow f(ab)^{-'} = e'$
 $\Rightarrow ab^{-'} \in K$
 $\Rightarrow Ka = Kb$
 $\therefore \varnothing$ is one-one.

ø is onto :-

Let x∈G′

Since f:G
$$\rightarrow$$
G' is onto

$$\Rightarrow \exists a \in G \ni f(a)=x$$

Since $a \in G$ then $ka \in G/K$

$$\Rightarrow \emptyset(Ka) = x$$

 $\therefore \emptyset$ is onto

ø is a homomorphism:-

Let Ka, Kb
$$\in$$
 G/K
 \varnothing (Ka·Kb) = \varnothing (Kab)
= f(ab)
= f(a)·f(b)
= \varnothing (Ka)· \varnothing (Kb)
 $\Rightarrow \varnothing$ (Ka·Kb) = \varnothing (Ka)· \varnothing (Kb)
 $\therefore \varnothing$ is a homomorphism
Hence \varnothing :G/K \rightarrow G' is an isomorphism.

$$\Rightarrow$$
 G/K \approx G'

Theorem: - show that the mapping $f:G \rightarrow G$ is defined by $f(a)=a^{-1}$ for $a \in G$ is an automorphism iff G is abelian.

Proof: - Given that $f:G \rightarrow G$ is a mapping defined by $f(a)=a^{-1}$ for $a \in G$.

First Assume f is an automorphism.

To prove G is abelian

Let x,y
$$\in$$
 G \Rightarrow f(x) = x⁻', f(y) = y⁻'
 \Rightarrow f(xy) = (xy)^{-'}
 \Rightarrow f(xy) = y^{-'}x^{-'}
 \Rightarrow f(xy) = f(y)f(x)
 \Rightarrow f(xy) = f(yx)
 \Rightarrow xy = yx

∴ G is abelian

Conversely suppose G is abelian

To prove f is an Automorphism

f is one-one :-

Let x,y
$$\in$$
 G
f(x) = f(y)
 $x^{-1} = y^{-1}$
 $(x^{-1})^{-1} = (y^{-1})^{-1}$
 $x = y$

 $\div f \text{ is one-one}$

f is onto :-

Let
$$x \in G$$
 (co-domain)
Then $x^{-'} \in G$ (domain)
Now $f(x^{-'}) = (x^{-'})^{-'} = x$
 $\therefore x \in G \exists x^{-'} \in G \ni f(x^{-'}) = x$
 $\Rightarrow f$ is onto

f is homomorphism :-

Let x,y
$$\in$$
 G

$$f(xy) = (xy)^{-1}$$

$$= y^{-1}x^{-1}$$

$$= x^{-1}y^{-1}$$

$$= f(x) \cdot f(y)$$

$$\Rightarrow f(xy) = f(x) \cdot f(y)$$

$$\therefore f \text{ is a homomorphism}$$

Hence f is an Automorphism.

Theorem: - Let a be a fixed element of a group G.Then the mapping $f_a:G\rightarrow G$ is defined by $f_a(x)=a^{-1}xa$ for $x\in G$ is an Automorphism of G.

Proof :- Let a be a fixed element of G.

fa:G \rightarrow G is defined by f_a(x) = a⁻¹xa for x \in G

To prove fa is an Automorphism

f_a is one-one :-

Let x,y \in G $f_a(x) = f_a(y)$ $\Rightarrow a^{-1}xa = a^{-1}ya$ $\Rightarrow x = y$ \therefore fa is one-one

fais onto :-

Let y∈G (Co-Domain)

Since a∈G
⇒a^{-'}∈G
⇒aya^{-'}∈G (Domain)
Now
$$f_a(aya^{-'}) = a^{-'}(aya^{-'})a$$

 $= (a^{-'}a)y(a^{-'}a)$
 $= e y e$
 $= y$
∴y∈G ∃ aya^{-'}∈G ∋ $f_a(aya^{-'}) = y$

```
\Rightarrow f_a \text{ is onto}
```

fa is a homomorphism :-

- Let x,y \in G $f_a(xy) = a^- xya$ $= a^- xeya$ $= a^- xeya$ $= a^- xeya$
- $\div f_a \text{ is a homomorphism}$

Hence $f_{\mathfrak{a}}$ is an Automorphism.

Inner Automorphism :- Let G be a group and 'a' be a fixed element in G. Then the mapping $f_a:G \rightarrow G$ is defined by

 $f_a(x)=a^{-1}xa$ for $x\in G$ is known as Inner Automorphism.

Outer Automorphism :- An Automorphism which is not inner is called outer Automorphism.

NOTE :- The Set of all Automorphism of a group G is denoted by A(G) and is defined as A(G)= $\{f/f:G \rightarrow G \text{ is an Automorphism}\}$.

Theorem:- The set of all Automorphism of a group G form a group with respect to composition of mappings.

Proof :- Let G be a group

Define $A(G) = \{f/f: G \rightarrow G \text{ is an Automorphism}\}$

To prove that (A(G),o) is a group.

Binary operation :-

Let $f,g \in A(G)$

Clearly fog is bijective (one-one,onto)

Now (fog)(ab) = f(g(ab))

 $= f(g(a) \cdot g(b))$

 $= f(g(a)) \cdot (g(b))$

 $= fog(a) \cdot fog(b)$

 \Rightarrow fog is a homomorphism

 $\Rightarrow fog \in A(G)$ ∴ f,g ∈ A(G) $\Rightarrow fog \in A(G)$ \Rightarrow 'o' is a binary operation on A(G).

Associative :-

Let f,g,h ∈A(G),x∈G

Now
$$((fog)oh)(x) = (fog)(h(x))$$

$$= f(g(h(x)))$$

= f((goh)(x))

= (fo(goh))(x)

 \therefore 'o' is associative.

Existence of Identity:-

Let $f \in bA(G)$.

We know that I:G \rightarrow G is an Automorphism

 $\Rightarrow I \in A(G)$

Now (fol)(x) = f(l(x))

 \Rightarrow fol = f

$$(Iof)(x) = I(f(x))$$

 $:: I \in A(G)$ is the identity.

Existance of Inverse :-

Let $f \in A(G)$, $I \in A(G)$

Clearly $f^{-1}: G \rightarrow G$ is bijective

Let a, b \in G Now f[f⁻¹(a) · f⁻¹(b)] = (fof⁻¹)(a) · (fof⁻¹)(b) = I(a) · I(b) = ab \Rightarrow f[f⁻¹(a) · f⁻¹(b)] = ab \Rightarrow f⁻¹[f(f⁻¹(a) · f⁻¹(b)]] = f⁻¹ (ab) \Rightarrow f⁻¹(a) · f⁻¹(b) = f⁻¹(ab) \Rightarrow f⁻¹ is an homomorphism \Rightarrow f⁻¹ \in A(G) \therefore (A(G),o) is a group.

UNIT – 5

PERMUTATIONS GROUPS

DEFINITION:A Permutation is a one –one mapping of a empty set onto itself. Thus a permutation is a bijective mapping of a non-empty set onto itself.

Example: f: R \rightarrow R defined by f(x) = x+1 is a permutation of R since f is an one-one mapping onto itself.

Note: If $S = \{a_1, a_2, ..., a_n\}$ then a one – one mapping from S onto itself is called a permutation of degree n. The number of elements in S is called the degree of permutation.

Equal Permutation: Two permutations f and g defined over a non-empty set S are said to be equal if f(a) = g(a) for all $a \in S$

Permutation multiplication (or) Product of permutations:

It is the composition of mappings defined over the non – empty set S. If g, f are two permutations (bijective mapping) defined over S, then the product or multiplications of f, g is defined as gof(or) gf where

(gf) (a) = g[f(a)] for all $a \in S$. Further gf is also a bijective mapping over S.

Product of Permutations (or) Multiplication of permutations (or) Composition of permutations in S_n :

Let $f = a_1 \quad a_2 \quad \dots \quad a_n \quad b_1 \quad b_2 \quad \dots \quad b_n$ $\begin{pmatrix} b_1 \quad b_2 \quad \dots \quad b_n \end{pmatrix}$, $g = \begin{pmatrix} c_1 \quad c_2 \quad \dots \quad c_n \end{pmatrix}$ be two elements (permutations) of S_n . Here b_1 , b_2 , \dots b_n (or) c_1 , c_2 , \dots c_n are nothing but the elements a_1 , a_2 , \dots a_n of S_n is some order.

Therefore $gf = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ c_1 & c_2 & \dots & c_n \end{pmatrix}$

Permutation Group: The set A(S) of all permutations defined over a non-empty set S forms a group under the operation permutation multi[placation. The above group is called group of permutations .

Identity Permutation: If f is a permutation of S such that f(a) = a for all

 $a \in S$, then f is identity of S and we denote f as I.

Order of permutation: If $f \in S_n$ such that $f^n = I$, the identity permutation in S_n , where n is the least positive integer, then the order of the permutation f is S_n is n.

Note: Order of S_n is nI

If the number of elements in S is 1, then the order of S is 1I = 1

If the number of elements in S is 2, then the order of S is 2I = 2

If the number of elements in S is 3, then the order of S is 3I = 6 and so on

Problems:

1. If $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 2 & 3 & 1 \\ 2 & 3 & 1 \\ 2 & 3 & 1 \end{pmatrix}$, then find AB and BA. Solution: Given that $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 2 & 3 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{pmatrix}$ $AB = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = I$ $BA = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} = I$ Therefore AB = BA = I $gf = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 2 \end{pmatrix}$ 3. If $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 2 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 \end{pmatrix}$ Then find (fg)h = f(gh).

Solution: Given that $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 \end{pmatrix}$, $g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$, and $h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$, $fg = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 2 & 1 \end{pmatrix}$, $(fg)h = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 1 & 3 \end{pmatrix}$ (fg)h = $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 1 & 3 \end{pmatrix}$ Next to find f(gh) gh = $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 \end{pmatrix}$, $f(gh) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}$, $f(gh) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}$, $f(gh) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}$, $f(gh) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}$, $f(gh) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 5 & 2 \end{pmatrix}$, $f(gh) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 1 & 3 \end{pmatrix}$

Therefore f(gh) = (fg)h

Multiplication is Associative.

Inverse of a permutation: It is also a permutation (bijection).

If $f = \begin{array}{ccccc} a_1 & a_2 & \dots & a_n \\ (b_1 & b_2 & \dots & b_n \end{array}$, then its inverse, denoted by f is $\begin{pmatrix} a_1 & a_2 & \dots & b_n \end{pmatrix}$, $a_n = \begin{array}{ccccc} a_1 & a_2 & \dots & a_n \end{array}$

Problems:

1. Find the inverse of the permutation $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 1 & 2 \end{pmatrix}$ Solution: Given that $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 1 \end{pmatrix}$

Then
$$f^{-1} = \begin{pmatrix} 3 & 4 & 5 & 6 & 1 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$$

= $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 1 & 2 & 3 \end{pmatrix}$

Example: Consider S = {1, 2, 3} and a permutation on S is f = $\begin{pmatrix} 1 & 2 \\ & 3 \\ 2 & 1 & 3 \end{pmatrix}$

Here f(1) = 2 $f^{2}(1) = f(f(1)) = f(2) = 1$

The orbits of 1 under $f = \{ f(1), f(2) \} = \{ 2, 1 \}$

f(2) = 1

$$f^{2}(1) = f(f(2)) = f(1) = 2$$

The orbits of 2 under $f = \{ f(2), f^2(2) \} = \{ 1, 2 \}$

f(3) = 3

The orbits of 3 under $f = \{ f(3) \} = \{3\}.$

Problem : Find the orbits of $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 5 & 1 & 4 & 6 & 8 & 7 \end{pmatrix}$ Solution : Given that $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 5 & 1 & 4 & 6 & 8 & 7 \end{pmatrix}$

Now $\sigma(1) = 2$

 $\sigma^2(1) = \sigma(\sigma(1)) = \sigma(2) = 3$

$$\sigma^{3}(1) = \sigma(\sigma^{2}(1)) = \sigma(3) = 5$$

 $\sigma^4(1) = \sigma(\sigma^3(1)) = \sigma(5) = 4$

 $\sigma^{\mathbf{5}}(1) = \sigma \; (\sigma^{\mathbf{4}}(1)) = \sigma \; (4) = 1$

The orbits of 1 under σ is {2,3,5,4,1}.

 $\sigma(2) = 3$

$$\sigma^{2} (2) = \sigma (\sigma(2)) = \sigma (3) = 5$$

$$\sigma^{3} (2) = \sigma (\sigma^{2}(2)) = \sigma (5) = 4$$

$$\sigma^{4} (2) = \sigma (\sigma^{3}(2)) = \sigma (4) = 1$$

$$\sigma^{5}(2) = \sigma (\sigma^{4}(2)) = \sigma (1) = 2$$

The orbits of 2 under σ is {3,5,4,1,2}.

$$σ (3) = 5$$

$$σ2 (3) = σ (σ(3)) = σ (5) = 4$$

$$σ3 (3) = σ (σ2(3)) = σ (4) = 1$$

$$σ4 (3) = σ (σ3(3)) = σ (1) = 2$$

$$σ5(3) = σ (σ4(3)) = σ (2) = 3$$

The orbits of 3 under σ is {5,4,1,2,3}.

$$\sigma (4) = 1$$

$$\sigma^{2} (4) = \sigma (\sigma(4)) = \sigma (5) = 2$$

$$\sigma^{3} (4) = \sigma (\sigma^{2}(4)) = \sigma (4) = 3$$

$$\sigma^{4} (4) = \sigma (\sigma^{3}(4)) = \sigma (1) = 5$$

$$\sigma^{5}(4) = \sigma (\sigma^{4}(4)) = \sigma (2) = 4$$

The orbits of 4 under σ is {1,2,3,5,4}.

$$\sigma (5) = 4$$

$$\sigma^{2} (5) = \sigma (\sigma(5)) = \sigma (5) = 1$$

$$\sigma^{3} (5) = \sigma (\sigma^{2}(5)) = \sigma (4) = 2$$

$$\sigma^{4} (5) = \sigma (\sigma^{3}(5)) = \sigma (1) = 3$$

$$\sigma^{5}(5) = \sigma (\sigma^{4}(5)) = \sigma (2) = 5$$

The orbits of 5 under σ is {4,1,2,3,5}.

$$\sigma(6)=6$$
The orbits of 6 under σ is {6}.

 $\sigma(7) = 8$

 $\sigma^{2}\left(7\right) = \sigma\left(\sigma(7)\right) = \sigma\left(8\right) = 7$

The orbits of 7 under σ is {8,7}.

 $\sigma\left(8\right)=7$

 $\sigma^{2}(8) = \sigma(\sigma(8)) = \sigma(7) = 8$

The orbits of 8 under σ is {7,8}.

Problem : Find the order of the permutation σ =	= (1	2	3	4	5	6
	` 2	3	5	1	4	6
Solution : Given that $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$						
$\sigma^{2} = \sigma. \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 5 & 1 & 4 & 6 & 2 & 3 & 5 & 1 \\ \end{pmatrix}$	5 4	6 6)				
$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 2 & 1 & 6 \\ 3 & 5 & 4 & 5 & 6 & 1 & 2 & 3 & 4 \\ 3 & 5 & 4 & 2 & 1 & 6 & 2 & 3 & 4 \\ 3 & 5 & 4 & 2 & 1 & 6 & 2 & 3 & 5 & 1 \\ \end{array}$	5 4	6) 6				
$=(\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5},\frac{5}{5},\frac{6}{5})$						
$\sigma^{4} = \sigma^{3}. \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 4 & 1 & 3 & 2 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 5 & 1 \end{pmatrix}$	5 4	6 6)				
$=\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 2 & 5 & 3 & 6 \end{pmatrix}$ $\sigma^{5} = \sigma^{4} \cdot \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 2 & 5 & 3 & 6 & 2 & 3 & 5 & 1 \end{pmatrix}$	5 4	6) 6				
$ = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} $						

The order of the permutation σ is 5.

Cyclic permutation :Consider a set S = { a_1, a_2, \dots, a_n } and a permutation $f = \begin{pmatrix} a_1 & a_2 & a_1 & \dots & a_n \\ a_2 & a_3 & \dots & a_{k+1} & \dots & a_n \end{pmatrix} \text{ on S}$ i.e., $f(a_1) = a_2$, $f(a_2) = a_3$, $f(a_3) = a_4 \dots f(a_k) = a_1$, $f(a_{k+1}) = a_{k+1} \dots f(a_n) = a_n$

This type of permutation f is called a cyclic permutation of length k and degree n. It is represented by $(a_1, a_2, ..., a_k)$ (or) $(a_1, a_2, ..., a_k)$ which is a cycle of length k (or) k-cycle. The number of elements permuted by a cycle is called it's length.

Example : If S = {1, 2, 3, 4, 5, 6} then a permutation f on S is $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 6 & 5 \end{pmatrix}$

Solution: It can be written as (1 3 4 6 2)

f is a cycle of length 5

f can also be written as (3 4 6 2 1) (or) (4 6 2 1 3) etc

Example: Find the order of the cycle (1457)

Solution : Let $f = (1 \ 4 \ 5 \ 7)$

$$f^{=} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 2 & 3 & 5 & 7 & 6 & 1 \end{pmatrix}$$

$$f^{2} = f \cdot f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 2 & 3 & 5 & 7 & 6 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 2 & 3 & 5 & 7 & 6 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 2 & 3 & 7 & 1 & 6 & 4 \end{pmatrix}$$

$$f^{3} = f^{2} \cdot f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 2 & 3 & 7 & 1 & 6 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 2 & 3 & 5 & 7 & 6 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 2 & 3 & 1 & 4 & 6 & 5 \end{pmatrix}$$

$$f^{4} = f^{3} \cdot f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 2 & 3 & 1 & 4 & 6 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 2 & 3 & 5 & 7 & 6 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 2 & 3 & 1 & 4 & 6 & 5 \end{pmatrix}$$

 $f^4 = I$

The order of the cycle is 4.

Transposition: A cycle of length 2 is called is called a transposition.

Example : If S = $\{1 \ 2 \ 3 \ 4 \ 5\}$ and a permutation f on S is $\begin{pmatrix} 2 & 3 & 4 & 5 \\ 1 & 3 & 2 & 4 & 5 \end{pmatrix}$ then f = (2, 3) is a cycle of length 2 and degree 5.

Disjoint cycle: Let $S = \{a_1, a_2, ..., a_n\}$. If f, g be two cycles on S such that they have no common elements then these are called disjoint cycles.

Example: Let $S = \{1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7\}$

- > If f = (1 3 7) and g = (2 4 5) then f, g are disjoint cycles.
- > If $f = (1 \ 3 \ 7)$ and $g = (2 \ 3 \ 4 \ 5)$ then f, g are not disjoint cycles.

Inverse of a cyclic permutation:

Example : If $f = (2 \ 3 \ 4 \ 1)$ of degree 5 then find f'

Solution : Given that $f = (2 \ 3 \ 4 \ 1)$

$$f^{-'} = (1 \ 4 \ 3 \ 2)$$

Since $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \\ f^{-'} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 5 \\ 4 & 1 & 2 & 3 & 5 \end{pmatrix}$

Problem : If $f = \{1 \ 2 \ 3 \ 4 \ 5 \ 8 \ 7 \ 6\}$, $g = \{4 \ 1 \ 5 \ 6 \ 7 \ 3 \ 2 \ 8\}$ are cyclic permutations then show that (fg) '' = g '' f ''.

Solution : Given that $f = \{1 \ 2 \ 3 \ 4 \ 5 \ 8 \ 7 \ 6\}$

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 8 & 1 & 6 & 7 \\ f^{-'} & = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 1 & 2 & 3 & 4 & 7 & 8 & 5 \end{pmatrix}$$
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 8 & 2 & 1 & 6 & 7 & 3 \end{pmatrix}$$
$$g^{-'} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 8 & 2 & 1 & 6 & 7 & 3 \end{pmatrix}$$
$$g^{-'} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 7 & 8 & 1 & 5 & 6 \end{pmatrix}$$

$$fg = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 8 & 1 & 6 & 7 & 5 & 8 & 2 & 1 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 3 & 2 & 1 & 6 & 4 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 3 & 2 & 1 & 6 & 4 \end{pmatrix}$$

$$(fg)^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 3 & 7 & 8 & 6 & 2 & 1 \end{pmatrix}$$

$$g^{-1} f^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 7 & 8 & 1 & 5 & 6 & 2 & 6 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 7 & 8 & 1 & 5 & 6 & 2 & 6 & 1 & 2 & 3 & 4 & 7 & 8 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 3 & 7 & 8 & 6 & 2 & 1 \end{pmatrix}$$

Therefore $(fg)^{-} = g^{-} f^{-}$.

Order of a cyclic permutation:

Example : If $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ is a permutation group f_3 .

Solution : The cyclic permutation of f is (1 2 3)

$$f^{2} = f \cdot f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$
$$f^{3} = f^{2} \cdot f = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
$$f^{3} = I$$

Therefore f is a cyclic permutation of length 3 and degree 3. Also the order of f is 3.

Problem: write down the following products are disjoint cycles.

i. (1 3 2)(5 6 7)(2 6 1)(4 5)
ii. (1 3 6)(1 3 5 7)(6 7)(1 2 3 4)

Solution : (i) (1 3 2)(5 6 7)

 $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 4 & 5 & 6 & 7 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 6 & 7 & 5 \end{pmatrix}$

 $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 4 & 6 & 7 & 5 \end{pmatrix}$ (261)(45) $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 6 & 3 & 4 & 5 & 1 & 7 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 5 & 4 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 5 & 4 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 5 & 4 & 6 \end{pmatrix}$ $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 6 & 3 & 5 & 4 & 1 \end{pmatrix}$ Now $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 4 & 6 & 7 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 6 & 3 & 5 & 4 & 1 & 7 \end{pmatrix}$ $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 7 & 2 & 6 & 4 & 3 & 5 \end{pmatrix} = (2 \ 7 \ 5 \ 4 \ 6 \ 3) \ (1)$ (ii) (136)(1357) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & & 7 \\ & 3 & 2 & 6 & 4 & 5 & 1 & 7 & 3 & 2 & 5 & 4 & 5 & 6 & 7 \\ & 3 & 2 & 6 & 4 & 5 & 1 & 7 & 3 & 2 & 5 & 4 & 7 & 6 & 1 & 1 \\ \end{array}$ $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & 6 & 2 & 5 & 4 & 7 & 1 & 3 \end{pmatrix}$ (67)(1234) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 7 & 6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 5 & 6 & 7 \end{pmatrix}$ $= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 5 & 7 & 6 \end{pmatrix}$ Now $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 2 & 5 & 4 & 7 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 4 & 1 & 5 & 7 & 6 \end{pmatrix}$ = $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 5 & 4 & 6 & 7 & 3 & 1 \end{pmatrix}$ = $(1 \ 2 \ 5 \ 7)(3 \ 4 \ 6)$

Problem: Express the product (2 5 4)(1 4 3)(2 1) are the product of disjointcycles and find its inverse.

Solution: Given that
$$(2\ 5\ 4)(1\ 4\ 3)(2\ 1)$$

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 3 & 2 & 4 \end{pmatrix} \begin{pmatrix} 4 & 2 & 1 & 3 & 5 \end{pmatrix} \begin{pmatrix} 2 & 1 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \end{pmatrix}$

Note :

- The multiplication of disjoint cycles is commutative.
- Every permutation can be expressed as a product of disjoint cycles which is unique(a part from the order of the factors).
- Every cycle can be expressed as a product of transpositions.
- Every permutation can be expressed as a product of transpositions in many ways.

Even and Odd Permutations: A permutation is said to be an even (odd) permutation if it can be expressed as a product of even (odd) number of transpositions .

Note :

- Identity Permutation I is always an even permutation.
- A cycle of length n can be expressed as a product of n-1 transposition. If n is odd then the cycle can expressed as the product of odd number of transposition .If n is even then the cycle can expressed as the product of odd number of transposition.
- The product of two odd permutations is an even permutation.
- The product of two even permutations is an even permutation.
- The product of an odd permutations and an even permutation is an odd permutation.

- The inverse of an odd permutation is an odd permutation.
- The inverse of an even permutation is an even permutation.

Problem:

Examine whether the following permutations are even (or) odd. (¹ 7 2 3 4 5 6 (i) (ii) 2 3 5 1 6 7 **8** 3 2 1 3 2 5 6 7 1 856 4 4 (iii) (1 2 3 4 5) (1 2 3) (4 5) (iv)(8 9) \square \square 8 \square Solution: (i) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 5 & 6 & 7 & 1 \end{pmatrix}$ = (134567)(2)

= (1 3) (1 4) (1 5) (1 6) (1 7) (2)

Therefore the number of transpositions are odd

Given Permutation is odd.

(ii) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 3 & 1 & 8 & 5 & 6 & 2 & 4 \end{pmatrix}$ = (1 7 2 3) (4 8) (5) (6) = (1 7) (1 2) (1 3) (4 8) (5) (6)

Therefore the number of transpositions are even.

Given Permutation is even.

(iii) (1 2 3 4 5) (1 2 3) (4 5)

(1 2) (1 3) (1 4) (1 5) (2 3) (4 5)

Therefore the number of transpositions are even.

Given Permutation is even.

(iv) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 1 & 4 & 3 & 2 & 5 & 7 & 8 & 9 \end{pmatrix}$ = (1 6 5 2) (3 4) (7) (8) (9) = (1 6) (1 5) (1 2) (3 4)

Therefore the number of transpositions are even.

Given Permutation is even.

Theorem: Let S_n be the permutation group on n symbols. Then of the n! Permutations (elements) in $\frac{1}{2}$ n! are even permutations and $\frac{1}{2}$ n! are odd permutations.

Solution : Let $S_n = \{e_1, e_2, ..., e_p, o_1, o_2, ..., o_q\}$ be the permutation group on n symbols where $e_1, e_2, ..., e_p$ are even permutations and

 o_1 , o_2 ,.... o_q are odd permutations ("any permutation can be either even (or) odd but not both).

 \therefore p+q = n!

Let $t \in S_n$ and t be a transposition.

Then te_1 , te_2 , ..., te_p , to_1 , to_2 ,..., to_q are elements of S_n as permutation multiplication is a binary operation in S_n

Since t is an odd permutation te_1 , te_2 , ..., te_p are all odd and to ,

 tO_1 , tO_2 ,..., tO_q are all even permutations.

Let $te_i = te_j \ \text{ for } i \leq p$, $j \leq p$

 \implies $e_i = e_j$

which is absurd.

Therefore $te_i \neq te_j$ and hence the p permutations are all distinct in S_n .

But S_n contains exactly q odd permutations $p \le q$.

Similarly we can show that q even permutations

 tO_1 , tO_2 ,.... tO_q are all distinct even permutations in S_n .

 $q \leq p$

 $p = q = \frac{1}{2} n!$

So has $\frac{1}{2}$ n! even permutations and $\frac{1}{2}$ n! odd permutations.

Alternating set of permutations of degree n:

Let S_n be the permutation group on n symbols. The set of all $\frac{1}{2}$ n! even permutations of S_n , denoted by A_n is called the alternating set of permutations of degree n.

Theorem: The set An of all even permutations of degree n forms a group of order 1/2 n! With respect to permutation multiplication.

Proof: Let set An of all even permutations of degree n

• **Closure :** Let $f,g \in A_n$

i.e., f,g are even permutations on n symbols.

 \Rightarrow fg is also an even permutation on n symbols.

 \Rightarrow fg \in A_n

- Associativity: Since a permutation is a bijection, multiplication of permutations (composition of mappings) is associative.
- Existence of identity: Let I be the identity Permutation on n symbols, then $I \in A_n$, since I is an even permutation.

Then I is an even permutation

 \Rightarrow I \in A_n

Also for any $f \in A_n$, fI = If = f

I is an identity element in A_n .

- **Existence of inverse:** Let $f \in A_n$
- \Rightarrow f is an even permutation.

 \Rightarrow f⁻¹ is also an even permutation

 $\Rightarrow f^{-1} \in A_n$

Also $ff^{-1} = f^{-1}f = I$

Every element of A_n is invertible and the inverse of f is f⁻¹

 A_n is a group of order $\frac{1}{2}$ n! since the number of permutation on n symbols is $\frac{1}{2}$ n!

Thus The set An of all even permutations of degree n forms a group of order $\frac{1}{2}$ n! With respect to permutation multiplication.

Theorem: The set A_n of all even permutations on n symbols is a normal subgroup of the permutation group S_n on the n symbols.

Proof: Let A_n be the set of all even permutations on n symbols .

We know that S_n is a group on n symbols with respect to Permutation multiplication and $A_n (\subset S_n)$ is the set of even permutations.

Also A_n is a group with respect to Permutation multiplication.

Let $f \in S_n$ and $g \in A_n$

g is an even permutation and f is even (or) odd permutation.

If f is an odd permutation then f^{-1} is also an odd permutation.

Also fg is an odd permutation.

fgf⁻¹ is an even permutation and hence fgf⁻¹ \in A_n

If f is an even permutation then f^{-1} is also an even permutation.

Also fg is an even permutation.

fgf⁻¹ is an even permutation and hence fgf⁻¹ \in A_n.

Thus $f \in S_n$ and $g \in A_n \Longrightarrow fgf^{-1} \in A_n$.

 A_n is a normal subgroup of S_n

i.e., The set A_n of all even permutations on n symbols is a normal subgroup of the permutation group S_n on the n symbols.

Cayley's theorem :

Theorem: Every finite group G is isomorphic to a Permutation group.

Proof: Let (G, \cdot) be a finite group.

Now consider $f_a : G \to G$ defined by $f_a(x) = ax$ for all $x \in G$.

Now to prove that f_a is a Permutation.

f_a is well- defined: Let x, y $\in G$.

Suppose x = y

 \implies ax = ay

 \implies $f_a(x) = f_a(y)$

f_a is well-defined.

 f_a is one- one : Let x, y $\in G$.

Suppose $f_a(x) = f_a(y)$

 \implies ax = ay

 \implies x = y

Therefore f_a is one- one.

 \mathbf{f}_a is onto : Let $x \in G$.

Since $a \in G \implies a^{-1} \in G$

 $a^{-1} \in G$, $x \in G \Longrightarrow a^{-1} x \in G$

Now $f_a(a^{-1}x) = a(a^{-1}x) = aa^{-1}(x) = ex = x$

For x \in G there exists $a^{-1}x \in$ G such that $f_a(a^{-1}x) = x$

Therefore fa is onto .

Therefore fa is a Permutation on G.

Let $G' = \{ f_a / a \in G \}$ be the set of all permutations on G corresponding to every element of G.

Now to prove that G'is a group with respect to Permutation multiplication.

Since $e \in G$, $f_e \in G'$

 $G' \neq \emptyset$

Closure: Let f_a , $f_b \in G'$

For every $(f_a f_b)(x) = f_a(f_b(x))$ = $f_a (bx)$ = a(bx)= abx= $f_{ab}(x)$ $\Rightarrow (f_a f_b)(x) = f_{ab}(x)$ for all $x \in G$. $f_a f_b = f_{ab} \in G'$ Associativity : Let $f_a, f_b, f_c \in G'$ for $a, b, c \in G$ $f_a (f_b f_c) = f_a (f_b f_c)$

 $= f_{(ab)c}$

 $= f_{ab}f_c$

 $= (f_a f_b) f_c$

 $f_a \, (f_b \, f_c \,) = \, \, (f_a \, f_b \,) f_c$

Existence of identity:Let e be the identity in G.

Let $e \in G$, $f_e \in G'$

Let $f_a \in G'$

 $f_a f_e = f_{ae} = f_a \, and \,$

 $f_ef_a=f_{ea}\ =f_a$

Identity in G exists and it is f_e .

Existence of inverse:Let $f_a \in G'$

Since $a \in G \Longrightarrow a^{-1} \in G$

 $f_a{}^{\text{-1}} {\in} G'$

 $f_a f_a^{-1} = f_{aa-1} = f_e$

 $f_a^{-1}f_a = f_{a-1a} = f_e$

Every element in G' is invertible and $(f_a)^{-1} = f_{a-1}$

Therefore G' is a group.

Consider $\emptyset : G \to G'$ defined by $\emptyset(a) = f_a$ for $a \in G$

\emptyset is well- defined : Let a,b \in G

```
Suppose a = b
```

 \Rightarrow ax = bx

```
\Longrightarrow f_{a}(x) = f_{b}(x)
```

 \implies $f_a = f_b$

$$\Rightarrow \emptyset(a) = \emptyset(b)$$

ThereforeØ is well-defined.

 \emptyset is one- one : Let a,b \in G.

- $\emptyset(a) = \emptyset(b)$
- \implies $f_a = f_b$
- \implies f_a (x) = f_b (x)
- \Rightarrow ax = bx

$$\Rightarrow$$
 a = b

Therefore Ø is one -one.

Ø is onto :Let $f_a \in G'$

 \Rightarrow a∈G and Ø(a) = f_a

For each $f_a \in G'$ there exists $a \in G$ such that $\emptyset(a) = f_a$

Therefore Ø is onto

\emptyset is a Homomorphism : Let a,b \in G

 $= f_a f b$

 $= \emptyset(a)\emptyset(b)$

Therefore \emptyset is a Homomorphism.

The finite group G is isomorphic to the permutation group.

Thus the every finite group G is isomorphic to the permutation group.

Note : The group G' in the Cayley's Theorem is called a regular permutation group.

• Problem : Find the regular permutation group isomorphic to the multiplicative group $\{1, \omega, \omega^2\}$

Solution: We use Cayley's Theorem

If G is a group then the regular permutation group isomorphic to the group G is { $f_a/a\in G$ } where $f_a: G \to G$ defined by $f_a(x) = ax$ for all $x\in G$.

Let $G = \{ 1, \omega, \omega^2 \}$ be the multiplicative group then the regular permutation group isomorphic to the multiplicative group G is

 $\{ f_1, f_{\omega} f_{\omega^2} \}$

$$f_{\omega} = \begin{pmatrix} 1 & \omega & \omega^{2} \\ 1.1 & 1.\omega & 1.\omega^{2} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & \omega & \omega^{2} \\ 1 & \omega & \omega^{2} \end{pmatrix}$$
$$f \omega = \begin{pmatrix} 1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \end{pmatrix}$$

$$f \omega^2 = \begin{pmatrix} 1 & \omega & \omega^2 \\ \omega^2 & 1 & \omega \end{pmatrix}$$

• Problem : Find the regular permutation group isomorphic to the multiplicative group { 1,-1 ,i ,-i}

Solution: We use Cayley's Theorem

If G is a group then the regular permutation group isomorphic to the group G is $\{f_a/a\in G\}$ where $f_a: G \to G$ defined by $f_a(x) = ax$ for all $x\in G$.

Let $G = \{1, -1, i, -i\}$ be the multiplicative group then the regular permutation group isomorphic to the multiplicative group G is

 $\{ f_1, f_{-1}, f_i, f_{-i} \}$

$$f_{1} = \begin{pmatrix} 1 & -1 & i & -i \\ 1 & -1 & i & -i \end{pmatrix}$$

$$f_{-1} = \begin{pmatrix} 1 & -1 & i & -i \\ -1 & 1 & -i & i \end{pmatrix}$$

$$f_{i} = \begin{pmatrix} 1 & -1 & i & -i \\ 1 & -i & 1 & i \end{pmatrix}$$

$$f_{-i} = \begin{pmatrix} 1 & -1 & \Box & -\Box \\ -i & -\Box & 1 & -1 \end{pmatrix}$$

Cyclic Groups

Note : Let G be a group and 'a' be an element of G. Then $H = \{a^n/n \in Z\}$ is a subgroup of G. Further H is the smallest subgroup of G Which contained the element 'a'.

Cyclic subgroup generated by 'a' : Suppose G is a group and 'a' is an element of G. Then the subgroup $H = \{a^n/n \in Z\}$ is called a cyclic subgroup generated by 'a'. 'a' is called generator of H. This will be written as $H = \langle a \rangle$ (or) (a) (or) $\{a\}$.

Note : Let G be a cyclic groupgenerated by 'a' if O(a) = n, then an = e and { $a^1, a^2, ..., a^{n-1}, a^n = e$ } is preciously the set of distinct elements belonging to G, where 'e' is the identity in the group (G, \cdot).

Cyclic subgroup : Suppose G is a group and there is an element of $a \in G$ such that $G = \{a^n/n \in Z\}$ then G is called a cyclic group and 'a' is called generator of G. We denote G by (a) (or) (a) (or) {a}.

Theorem: If G is a finite group and $a \in G$, then O(a)/O(G).

Proof : G is a finite group.

Let O(G) = m

Let H be the cyclic subgroup of G generated by'a' O(a) = n

Therefore O(H) = n

But by Lagranges theorem $O(H)/O(G) \Rightarrow n/m$

 \Rightarrow i.e., O(a)/O(G)

Note : If G is a finite group of order n and if $a \in G$. Then $a^n = e$

(identity in G)

Problem : Prove that (Z,+) is a cyclic group.

Solution : Given that (Z,+) is a group and $1 \in Z$

$$1^0 = 0.1 = 0$$

 $1^1 = 1.1 = 1$, $1^2 = 2.1 = 2...$ etc

 $1^{-1} = -1.1 = -1, 1^{-2} = -2.1 = -2...$ etc

1 is generator of the cyclic group (Z,+) i.e., $Z = \langle 1 \rangle$

Similarly we can prove that $Z = \langle -1 \rangle$

Problem: Show that $G = \{1, -1, i, -i\}$ the set of all fourth roots of unity is acyclic group with respect to multiplication.

Solution : Given that $G = \{1, -1, i, -i\}$

Clearly (G, \cdot) be a group.

$$(i)^1 = i$$
, $(i)^2 = -1$, $(i)^3 = i^2 \cdot i = -1 \cdot i = -i$,

 $(i)^4 = i^2 \cdot i^2 = -1 \cdot -1 \cdot = 1$

Thus all the elements of G are the power of $i \in G$

G is a cyclic group generated by i, $G = \langle i \rangle$

Similarly we can have $G = \langle -i \rangle$

Problem : Show that the set of all cube roots of unity is a cyclic group with respect to multiplication.

Proof : The set of all cube roots of unity $G = \{1, \omega, \omega^2\}$

 $(\omega)^1 = \omega$, $(\omega)^2 = \omega^2$, $(\omega)^3 = 1$

Then the elements of G are the power of the single element $\omega \in G$.

G is a cyclic group generated by ' ω '. i.e., G = $\langle \omega \rangle$

We can also have $G = \langle \omega^2 \rangle$

Problem : Show that the set nth roots of unity with respect to multiplicationis a cyclic group.

Proof: We know that $G = \{\omega^{\circ} = 1, \omega^{\circ}, \omega^{2}, \dots, \omega^{n-1}\}$

 $\omega^k = e^{2k\pi/n}$, k = 0, 1, 2, ... (n-1) is a group under multiplication.

$$(\omega)^{\mathbf{0}} = 1 = \mathbf{e}$$
, $(\omega)^{1} = \omega$, $(\omega)^{2} = \omega \cdot \omega = \omega^{2}$,

 $(\omega)^3 = \omega^2 \cdot \omega = \omega^3 \cdot \ldots \cdot (\omega^{n-1}) = \omega^{n-1}$

Thus, every element of G is some power of ω .

G is a cyclic group generated by ' ω '. i.e., G = $\langle \omega \rangle$.

Theorem : Every cyclic group is an abelian group.

Proof: Let G be a cyclic group generated by'a'then

$$G = \{a^n/n \in Z\}$$

Let a^r , $a^s \in G$, $r, s \in Z$

 $a^r \ .a^s = a^{r+s} = a^{s+r} = a^s \ .a^r$

Therefore G is abelian.

Theorem : If 'a' is a generator of a cyclic group G then a⁻¹ is also a generator of G.

(**OR**)

If $G = \langle a \rangle$, then $G = \langle a^{-1} \rangle$

Proof: Let $G = \langle a \rangle$ be a cyclic group.

If $G = \{a^n/n \in Z\}$

Let $a^{\mathrm{r}}{\in}G$, $r{\in}Z$

 $(a^{r}) = (a^{-1})^{-r}$, $-r \in \mathbb{Z}$

Thusa⁻¹ is the generator of G . i.e., $G = \langle a^{-1} \rangle$.

Theorem : Every subgroup of cyclic group is cyclic.

Proof : Let $G = \langle a \rangle$ is a cyclic group then $G = \{a^n/n \in Z\}$.

Let H be a subgroup of G.

Then every element of H is an element of G.

Thus every element of H is of the form a^n , $n \in \mathbb{Z}$

Let 'd' be the smallest positive integer such that $a^n \in H$.

To prove that $H = \langle a^d \rangle$.

Let $a^m \in H$, where $m \in Z$.

By division algorithm, $\exists q, r \in Z \ni m = dq+r$ where r = 0 (or) 0 < r < d.

Therefore $a^m = a^{dq+r} = a^{dq} \cdot a^r = (a^d)^q \cdot a^r \rightarrow (1)$

But $a^d \in H \Longrightarrow (a^d)^q \in H \Longrightarrow a^{dq} \in H \Longrightarrow a^{-dq} \in H$

Now a^m , $a^{-dq} \in H \Longrightarrow a^{m-dq} \in H$

 $\Rightarrow a^r \in H$

But 0 < r < d and $a^r \in His$ a contradiction to our assumption. From (1), therefore r = 0.

$$a^m = (a^d)^q$$

Therefore H is a cyclic group generated by a^d.

i.e., $H = \langle a^d \rangle$.

Theorem : The quotient of a cyclic group is cyclic.

Proof : Let $G = \langle a \rangle$ be a cyclic group with 'a' as generator.

Let N be a subgroup of G.

Since G is abelian.

Therefore N is normal in G.

We know that $G/N = \{Nx/x \in G\}$.

Now, $a \in G$, $Na \in G/N \implies \langle Na \rangle \subseteq G/N \rightarrow (1)$

Also, $Nx \in G \implies x \in G = \langle a \rangle$

Therefore $x = a^n$ for some $n \in \mathbb{Z}$.

 $Nx = Na^n = N$ (a ,a , ...a(n times))

= (Na)(Na)(Na)(n times)

 $= (Na)^n$

Therefore $Nx \in G/N \implies Nx \in \langle Na \rangle$

Therefore $G/N \subseteq \langle Na \rangle \rightarrow (2)$

From (1) & (2) $G/N = \langle Na \rangle$

i.e., quotient group of a cyclic group is cyclic.

Theorem : If P is a prime number then every group of order p is cyclicgroup i.e., a group of prime order is cyclic.

Proof : Let $P \ge 2$ be a prime number.

Let G be a group of order p.

Claim : G is a cyclic group.

O(G) = p then there exists at least one element a other than element e in G.

```
(a) is cyclic subgroup of G.
```

 $a \neq e$, $a \in \langle a \rangle$

 $\langle a \rangle \neq \langle e \rangle$

 $O(\langle a \rangle) = h$

By Lagranges theorem, $O(\langle a \rangle)/O(G)$ i.e., h/p

```
h = 1 (or) h = p
```

 $\langle a \rangle \neq \langle e \rangle.$

Therefore h = p

$$O(\langle a \rangle) = O(G)$$

 $G = \langle a \rangle$

G is a cyclic group.

Theorem : The order of a cyclic group is equal to the order of its generator.

Proof : Let G be a cyclic group generated by 'a'. i.e., $G = \langle a \rangle$

(i) Let O(a) = n, n is finite number then $e = a^{\circ}$, a^{1} , a^{2} ,... $a^{n-1} \in G$

Now we prove that this elemens are distinct and this are the only elements of G such that O(G) = n.

Let i, j (\leq (n-1)) be two non-negative integer such that $a^i = a^j$ for $i \neq j$.

Now either i > j (or) i < j

Suppose i > j

Then $a^i a^{-j} = a^j a^{-j}$

 $a^{i\text{-}j} = a^{j\text{-}j}$

 $a^{i-j} = a^{o} = e$ and 0 < (i-j) < n

But this contradiction the fact that O(a) = n

Therefore $a^i \neq a^j$

Therefore a^0 , a^1 , a^2 , are all distinct.

Consider any $a^p \in G$, where p is any integer.

By Euclid's algorithm , $\exists q, r \in \mathbb{Z} \ni p = nq+r$ where $0 \le r \le n$.

Then $a^p = a^{nq+r} = a^{nq} .a^r = (a^n)^q .a^r = a^q .a^r = e$. $a^r = a^r$

But a^r is on of a^o , a^1 , a^2 ,... a^{n-1}

Hence each $a^p \in G$ is equal to one of the elements a^o , a^1 , a^2 ,... a^{n-1} i.e., O(G) = n = O(a).

(ii) Let O(a) be infinite.

Let m ,n be two positive integers such that $a^m = a^n$ for $m \neq n$.

```
Suppose m > n
```

```
Then a^m a^{-n} = a^n a^{-n}
```

```
a^{m-n} = a^{n-n}
```

 $a^{m\text{-}n}=a^{\textbf{o}}=e$

=**O**(a) is finite

It is a contradiction to the fact that O(a) is infinite.

Therefore $a^m \neq a^n$ for $m \neq n$.

Hence, G is of infinite order.

Thus from (1) & (2),

The order of a cyclic group is equal to the order of its generator.

Note : A cyclic group of order n has Ø(n) generators.

Problem : Show that the group $G = (\{1,2,3,4,5,6\}\times7)$ is cyclic also writedown all its generators.

Solution : Clearly O(G) = 6

If there exists an element $a \in G$ such that O(a) = 6

Then G is cyclic group with generator 'a'

 $3^{1} = 3$, $3^{2} = 3 \times_{7} 3 = 2$, $3^{3} = 3^{2} \times_{7} 3 = 6$, $3^{4} = 3^{3} \times_{7} 3 = 4$,

 $3^{5} = 3^{4} \times_{7} 3 = 5$, $3^{6} = 3^{5} \times_{7} 3 = 1$, the identity element

Therefore G is a cyclic group with generator 3.

Since 5 is relatively prime to 6, 3^5 is a generator of G.

i.e., '5' is a generator of G.

Note: If $n = P_1 \alpha 1$, $P_2 \alpha 2$,... P_k . αk where P_1 , P_2 ,..., P_k are all prime factors of n then $\emptyset(n) = n(1 - 1/P_1) (1 - 1/P_2) ... (1 - 1/P_k)$

Problem : Find the number of cyclic groups of orders 5, 6, 8, 12, 15, 60.

Solution : O(G) = 5 the number of generators of

 $G = \emptyset(5) = 5(1-1/5) = 5(4/5) = 4.$

O(G) = 6, the number of generators of

$$G = \emptyset(6) = 6(1 - 1/2) (1 - 1/3) = 6(1/2) (2/3) = 2.$$

O(G) = 8, the number of generators of

 $G = \emptyset(8) = 8(1 - 1/2) = 4$

O(G) = 12, the number of generators of

 $G = \emptyset(12) = 12(1-1/2)(1-1/3) = 12(1/2)(2/3) = 12(1/6) = 4$

O(G) = 15, (3, 5 are the only prime factors of 15)

the number of generators of

 $G = \emptyset(15) = 15(1-1/3) (1-1/5) = 15 (2/3)(4/5) = 8$

O(G) = 60, (2, 3, 5 are the only prime factors of 60)

the number of generators of

$$\mathbf{G} = \mathbf{\emptyset}(60)$$

= 60(1-1/2)(1-1/3) (1-1/5)= 60 (1/2) (2/3)(4/5)= 16.