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Unit -1: Groups 

INTRODUCTION : 

Set : 
Collection of well – defined objects. 

Empty Set : 
Having No Elements in the Set. 

Non – Empty Set : 
Having at least one Element in the Set. 

Binary Operation / Closure Law 
Let S be a non – empty set . If * : S X S → S is a mapping then * is 

called binary operation on S . If for all a , b ϵ S → a*b Є S 
Examples: 

1. +,-, · are binary operations on Z 
For 1,2 Є Z →1+2=3 Є Z 

→ 1-2=-1 Є Z 
→ 1·2=2 Є Z 

2. / is not binary operation on Z 

For 1,2 Є Z →1/2 ∉ Z 



Algebraic Structure : 
A non – empty set equipped with one (or) more binary operations is called an 

Algebraic Structure 
Examples : 
(Z,+), (Z,-), (Z,·), (Z,+,·) are all algebraic structures and (Z, /) is not an algebraic 
structure. 
NOTE: 

If + is a binary operation on S then the algebraic structure can be written as 
(S, +) 
Associative Law : 

A binary operation * on S is said to be associative 
if (a*b)*c = a*(b*c), for all a,b,c ЄS. 
Examples : 

+, * satisfies associative property in Z. 
/, - does not satisfies associative property in Z 

Semi Group : 
An Algebraic structure (G,*) is called a Semi Group if it satisfies the 
Associative Law with * in G. 

Identity Element : 
Let S be a non – empty set and * be a binary operation on S . If there exist 

e1 Є S such that e1*a=a ,for all a Є S ,then e1 is called the left Identityof S 
with respect to the binary operation *. 
Let S be a non – empty set and * be a binary operation on S . If there exist 
e2 Є S such that a* e2 =a ,for all a Є S ,then e2 is called the Right Identityof 
S with respect to the binary operation *. 
Let S be a non – empty set and * be a binary operation on S . If there exist e 
Є S such that e*a = a*e = a ,for all a Є S ,then e is called the Identity 
Elementof S with respect to the binary operation *. 
Additive Identity is zero. 
Multiplicative Identity is One. 

Examples : 
1. In (z,+) the identity is zero. 
2. In (R, ·) the identity is one. 

Monoid : 
A semi Group (G,*) with identity e with respect to the binary operation * is 

called Monoid. Example : 
1. (Z,+) is a monoid with identity Zero. 

2. (N,+) is not a monoid because it has 
no identity element. 
Invertible Element : 

Let (S,*)be a semi Group with identity e. An element a Є S is said to be 
invertible .If there exists b Є S such that a*b = b*a = e 



Here b is called inverse of a in S. 
Examples: 

1. a+(-a) = 0 →identity 
Here, –a is the Inverse of a. 

2. a·(1/a) = 1 →identity 
Here, a-1 is the Inverse of a. 

GROUP : 
An Algebraic structure(G,*) is said to be a group , if the following conditions are 
hold. 

(i) Associative : 
(a*b)*c = a*(b*c) ,∀ a, b,c ЄG 

(ii) Existence of Identity : 
∃e ЄG Э a*e = e*a =a , ∀ a ЄG. 

(iii) Existence of Inverse : 
for each a ЄG ∃ b ЄG Э a*b = b*a =e . 

Examples : (Z ,+) is a Group. 
Solution :Given that (Z,+) 
Claim : (Z ,+) is a Group. 
Clearly , (Z, +) is an Algebraic Structure 
so , + is binary operation 

(i) Associative : 
Let a = 1, b = 2, c = 3 
(a + b) + c = a + (b + c) 
(1 + 2) + 3 = 1+ (2 + 3) 

6 = 6 
∴ Associative Laws holds. 
(ii) Existence of Identity : 

Let e ЄZ ,a ЄZ 
a*e = e*a = a 

a + e = a …….(i) 

e = 0 
substitute, e = 0 in (i) 

a + 0 = a 
a = a 

e = a - a 

∴ 0 is the identity 
(iii) Existence of Inverse : 

Let a , b Є Z , e Є Z. 
a + b = e 
a + b = 0 

b = -a 
Here, “b” is the inverse of “a” 



Let a = -1 , b = -(-1) = 1 
Take , a + b = b + a = e 
then -1 + 1 = 1-1 = e 

0 = 0 = e 
∴ Every Element in Z has Inverse . 
∴ (Z , +) forms a Group. 

(N ,+) is not a Group. 
Here Additive Identity is Zero , 
but we know that the set of all Natural numbers are N = {1, 2, 3, …} 

Here, the Identity element ‘0’ does not exist . 
So, (N ,+) is not a Group. 

(N ,·) is not a Group. 
Here , Inverse condition fails because N does not contains negative numbers. 

So, (N ,·) is not a Group. 

AbelianGroup : 
A Group (G, *) is said to be Abelian if * is commutative. 
i.e., a*b = b*a ∀ a, b ЄG. 

Finite and Infinite Groups : 
If the set G contains a finite number of elements then the group G is called finite 
Group. 

Otherwise, it is known as an Infinite Group. 
Problems: 
If the set G of all even integers forms an abelian group under addition as the 
operation. 

(or) 
If G ={2x/ xЄZ}, then Show that (G,+) forms an Abelian group. 

Solution: 
Given that G = {2x/ xЄZ} 

= {…,-4,-2,0,2,4,…} 
Let a,b,c ЄG 

Here, a = 2α , b = 2β , c = 2γ , where α, β, γ ЄZ 
Claim : 

(G,*) forms an abelian group 
(i) Binary Operation / Closure law: 

Let a , b Є G 
Now , a + b = 2α + 2β 

= 2(α +β) Є G 
= a +b Є G 

Therefore, + is binary operation on G. 
(ii) Associative law: 

Let a , b , c Є G 
(a + b) + c = (2α + 2β) + 2γ 



= 2(α + β) + 2γ 
= 2[(α + β) + γ] 
= 2[α + (β + γ)] 
= 2α +[(2β+ 2γ)] 
= a +(b + c) 

(a + b) + c = a +(b + c) 
Therefore, Associative law holds. 

(iii) Existence of Identity: 
Let a Є G 

We know that 0ЄG 
Now a + 0 = 2α + 0 

= 2α +2(0) 
= 2(α + 0) 
= 2α 
= a 

Therefore, ‘0’ is the identity in ‘G’ 
(iv) Existence of Inverse: 
Let a ЄG 

a = 2α , for some α ЄZ 
- a = -2α , for some -α ЄZ 

→ -a ЄG 
Now a + (-a) = 2α +(-2α) 

= 2α - 2α 
= 2(α – α) 
= 2(0) 
= 0 
= e 

∴ ‘-a’ is the inverse element of ‘a’ in G 
∴  Every Element in G has Inverse. 

∴ (G, +) is a Group. 
AbelianGroup (Commutative Law): 

Let a , b Є G 
Now , a + b = 2α + 2β 

= 2(α +β) 
= 2(β +α) 
= 2β + 2α 
= b + a 

∴  (G, +) is an abelian group. 

2. Show that the set Q+ of all positive rational numbers forms an abelian group 

under the composition defined by о (circle) such that aоb = 𝑎𝑏∀ a, b ЄQ+ 
+ 

3 

Solution: Given that Q = The set of all positive rational numbers forms an abelian 

group under the composition defined by о(circle), such that aоb = 𝑎𝑏∀ a, b Є Q+ 
3 



Claims : (Q+, о) forms an abelian group. 
(i) Binary Operation / Closure Law : 
Let a, b Є Q+ 

aоb = 𝑎𝑏 Є Q+ 
3 

aоb Є Q 
∴о is binary in Q+ 

(ii) Associative law: 
Let a , b , c Є Q+ 

 
(aо b) о c = (𝑎𝑏) о c 

3 
= (𝑎𝑏)c/3 

3 

= (
𝑎𝑏𝑐

)
 

9 

aо (b о c) = a о (𝑏𝑐) 
3  

= a(𝑏𝑐)/3 
3 

= (
𝑎𝑏𝑐

)
 

9 

(aо b) о c = a о(b о c) 
Therefore, Associative law holds. 

(iii) Existence of Identity: 
Let a Є Q+ 

Suppose that a о e = a for some e Є Q+ 
𝑎𝑒 

 
→ ae – 3e = 0 

→ a(e - 3) = 0 
→ a ≠ 0 (or) e – 3 = 0 
→ e – 3 = 0 

→ e = 3 Є Q+ 

Now, aо e = a о 3 = 𝑎3 = 𝑎 
3 

= 𝑎 
3 

aо e = a 
∴ e = 3 is the identity in Q+ 
(iv) Existence of Inverse: 

Let a Є Q+ , b Є Q+ 
Suppose that, a о b = e 

 

 

 

 

𝑎𝑏 

3 
𝑎𝑏 

 
 
 
 
 
= 𝑎 

 

𝑏 = 
9
Є Q+ 

𝑎 

3 
= 3 

𝑎𝑏 = 9 

+ 



aо b = a о( 
9 

) 
𝑎 

= a(9) / 3 
𝑎 

= 9/3 
= 3 

= e 
∴aо b = e 

∴ Every element in Q+ has Inverse 

 

Commutative: 
Let a, b Є Q+ 

Now a о b = 𝑎𝑏 
3 

= 
𝑏𝑎 

3 
= b о a 

aо b = b о a 
∴ (Q+, о) forms an abelian group. 

Problem: 
Show that the set Z forms an abelian group w.r.to the operation * defined by 

a*b = a+b+2 ∀ a, b Є Z. 
Solution : Given that Z = {0, ±1, ±2, ±3, ±4,….} 
and a*b = a+b+2 
Claim: (Z, *) forms an abelian group. 

(i) Binary Operation / Closure Law : 
Let a, b ЄZ 
a*b = a+b+2 ЄZ 

a*b ЄZ 
∴ * is binary in 
(ii) Associative law: 

Let a , b , c Є Z 
(a*b)*c = (a+b+2)*c 

= a+b+2+c+2 
a*(b*c) = a*(b+2+c) 

= a+b+2+c+2 
∴ (a*b)*c = a*(b*c) 
(iii) Existence of Identity: 

Let a Є Z 
Suppose that a*e = a, for some e Є Z 

→ a+e+2 =a 
→ a+e+2-a =0 
→ e+2 =0 
→ e = - 2 Є Z 



Now a*e = a*(-2) 
= a-2+2 
= a 

∴a*e = a 
∴ e = -2 is the identity in Z. 

(iv) Existence of Inverse: 
Let a Є Z , b Є Z 

Suppose that, a * b = e 
a +b+2 = -2 
a +b = -2-2 
a +b = -4 

a* b = a+b+2 
= -4+2 
= -2 

= e 
∴ a * b = e 

Commutative: 
Let a,b Є Z 
a* b = a+b+2 

= b+a+2 
= b * a 

∴ a * b = b * a 
(Z, *) forms an abelian group. 

Problem: 
If G = Q – {1} and * is defined as a*b = a + b - ab then show that (G , *) is an 

abelian group. 
Solution: 
Given that G = Q – {1} and a*b = a + b – ab. 

Let a, b Є Q → ab Є Q , a≠1, b≠1 
Claim: (G,*) forms an abelian group. 

(i) Binary Operation / Closure Law : 
Let a, b ЄG 
a*b = a+b-ab ЄQ 

a*b ЄQ 
Now we have to prove that a*b ≠1 

Suppose that a*b = 1 
a+b-ab = 1 
a+b(1-a) = 1 

1(a-1)+b(1-a) = 0 
(a-1)(1-b) = 0 

a-1 = 0 (or) 1-b = 0 



a = 1 (or) b = 1 

which is a contradiction to a≠1, b≠1 

∴a*b ≠1 ЄG 

 
∴ * is binary in G 
(ii) Associative law: 

Let a , b , c Є G 
(a*b)*c = (a+b-ab)*c 

= (a+b-ab)+c-(a+b-ab)c 
= a+ b-ab+c- ac-bc+abc 

=a+b+c-ab-bc-ca+abc 
a*(b*c) =a*(b+c-bc) 

= a+(b+c-bc) –a (b+c-bc) 
= a+ b +c-ab - ac-bc+abc 

=a+b+c-ab-bc-ca+abc 
∴ (a*b)*c = a*(b*c) 
(iii) Existence of Identity: 

Let a Є G 
Suppose that a*e = a 

a + e - ae = a 
e – ae = 0 

e(1 - a) = 0 
e = 0 (or) 1-a = 0 

∴ e = 0 Є G 
Now a*e = a * 0 

= a+0-a(0) 
= a 

∴a*e = a 
∴ e = 0 is the identity in G. 

(iv) Existence of Inverse: 
Let a Є G 

Suppose that a*b = 0 
→ a+b-ab = 0 
→ a+b(1-a) = 0 
→ b(1-a) = -a 

 

→ b = −𝑎 
1−𝑎 

→ b = −𝑎 
−(𝑎−1) 

 

→ b =  𝑎 
(𝑎−1) 

Now, a*b = a* (
  𝑎 

) 
(𝑎−1) 



 
= a +  𝑎 

(𝑎−1) 
− 𝑎( 

𝑎 
) 

(𝑎−1) 

= 
𝑎(𝑎−1)+𝑎−𝑎2 

𝑎−1 

 

 
∴a*b = e 

= 
0 

𝑎−1 

= 0 

∴ Every Element in G has Inverse. 
Commutative: 
Let a,b Є G 
a* b = a+b-ab 

= b+a-ba 
= b * a 

∴ a * b = b * a 
(G, *) forms an abelian group. 

Problem: Show that the set G of rational numbers other than one under the 
composition defined by ⊕ , such thata⊕b = a + b –ab for a,bЄ G. forms an 
abelian group and hence show that x = 3/2, is a solution of 4⊕5⊕x = 7 
Solution: Given that G = Q – {1} and a⊕b = a + b – ab, for a, b, Є G . 

Let a, b, c Є G 
→ a, b, c Є Q , 

but a ≠ 1, b ≠ 1, c ≠ 1 
Claim: (G, ⊕) forms an abelian group. 

(i) Binary Operation / Closure Law : 
Let a, b ЄG 
a⊕b = a+b-ab ЄQ 

a⊕b ЄQ 
Now we have to prove that a⊕b ≠1 

Suppose that a⊕b = 1 
a+b-ab = 1 
a+b(1-a) = 1 

1(a-1)+b(1-a) = 0 
(a-1)(1-b) = 0 

a-1 = 0 (or) 1-b = 0 
a = 1 (or) b = 1 

which is a contradiction to a≠1, b≠1 
∴a⊕b ≠1 ЄG 
∴ ⊕ is binary in G 
(ii) Associative law: 

Let a , b , c Є G 
(a⊕b) ⊕c = (a+b-ab) ⊕c 

= (a+b-ab)+c-(a+b-ab)c 
= a+ b-ab+c- ac-bc+abc 



( 

=a+b+c-ab-bc-ca+abc 
a⊕ (b⊕c) =a⊕ (b+c-bc) 

= a+(b+c-bc) –a (b+c-bc) 
= a+ b +c-ab - ac-bc+abc 

=a+b+c-ab-bc-ca+abc 
∴ (a⊕b) ⊕c = a⊕ (b⊕c) 
(iii) Existence of Identity: 

Let a Є G 
→ a ≠1 

Suppose that a⊕e = a 
a + e - ae = a 

e – ae = 0 
e(1 - a) = 0 

∴ e = 0 Є G 
e = 0 (or) 1-a = 0 

Now a⊕e = a ⊕ 0 
= a+0-a(0) 
= a 

∴a*e = a 
∴ e = 0 is the identity in G. 

 
(iv) Existence of Inverse: 

Let a Є G 
Suppose that a⊕ b = 0 , for some b Є G 

→ a+b-ab = 0 
→ a+b(1-a) = 0 
→ b(1-a) = -a 

 

→ b = −𝑎 
1−𝑎 

→ b = −𝑎 
−(𝑎−1) 

 

→ b =  𝑎 
(𝑎−1) 

Now, a⊕b = a⊕ 
  𝑎 

) 
(𝑎−1) 

= a +  𝑎 
(𝑎−1) 

− 𝑎( 
𝑎 

) 
(𝑎−1) 

= 
𝑎(𝑎−1)+𝑎−𝑎2 

𝑎−1 

= 
0 

𝑎−1 
= 0 

∴a⊕b = e 
∴ Every Element in G has Inverse. 

Commutative: 
Let a,b Є G 



a⊕ b = a+b-ab 
= b+a-ba 
= b ⊕ a 

∴ a⊕ b = b ⊕a 
(G, ⊕) forms an abelian group. 
Now, (4⊕5) ⊕x = 7 

(4⊕5-4(5)) ⊕x=7 
(9-20) ⊕x=7 

-11⊕x = 7 
-11 + x – (-11x) = 7 

x + 11x = 7+11 
12x = 18 

x = 18/12 
x = 3/2 

 
THEOREM :In a group the identity element is unique . 
PROOF:  Let e1, e2 be two identities ina group (G,·) 
CLAIM :e1=e2 

Since e1 be the identity and e2∈G 
e1.e2 = e2. e1= e2---(1) 

since e2be the identity and e1 ∈G 
e2. e1= e1.e2=e1 ------- (2) 

from 1&2 
e1=e2 

hence in a group , the identity element is unique . 

THEOREM: In a group the inverse of any element is unique. 

PROOF :Let (G,·) be a group and `e” be the identity in G , a∈G 
Let b,c are two inverses of `a” 

a.b=b.a =e --- (1) 
since c is the inverse of `a” 

a.c =c.a=e ---- (2) 
now b=b.e 

=b(a.c) 
=(ba)c 
= e.c 
= c 

Therefore b=c 
Therefore In a group ,the inverse of each element is unique 

CANCELLATION LAWS : 

Let a,b ,c∈G and a≠0 then left cancellation law (LCL): 



Ab=bc=> b=c 
RIGHT CANCELLATION LAW (RCL): 
ba=ca=> b=c 

 
THEOREM : 
Cancellation laws hold in a group in a group G . 
PROOF : Let a,b,c∈G and a≠0 

Let `e” be the identity in G 
L.C.L: Now ab=ac 

a-1(ab)= a-1(ac) 
(a-1 a)b=(a-1a)c 

Eb=ec 
b=c 

R.C.L: Now consider ba =ca 
(ba) a-1=((a))a-1 

B(a a-1)=c(a a-1) 
b=c 

therefore hence cancelation laws in group G 

THEOREM : IN a group G and a,b∈G then (ab)-1=b-1 a-1 
PROOF : Let a,b∈G and `e” be the identity in G 
CLAIM : (ab)-1=b-1 a-1 
(1/ab) =b-1 a-1 
1=(a.b) (b-1 a-1 ) 
Now consider (ab) =(b-1 a-1 ) 
=(ab b-1).a-1 

= a.e.a-1 (therefore e=1) 
= a.a-1 
=1 

Now consider (b-1 a-1) (a.b) =(b-1 a-1 a).b 
=b-1 .e.b (e=1) 
= b-1.b 
=1 
Therefore (ab)-1 =b-1 a-1 

Problem 
Show that a group G is an abelian (if and only if ) (ab)2 = a2b2∀ a,b∈G 
Soln: given that G be a group 
Suppose that (ab)2=a2b2∀ a,b∈G 
Claim: G Isabelian 
That is ab=ba 
(ab)2= a2.b2 
Consider (ab) (ab)=(a.a) (b.b) a(bc)=(ab)c 



(ab)a)b=(a.a)b)b 
A(ba)b=a(ab)b 
Ba=ab 
Therefore G is abelian 
Conversely suppose that G is abelian ,that is ab=ba 

CLAIM: (ab)2= a2.b2∀ a,b∈G 
Consider (ab)2=(a b) (ab) 

= a(ba)b 
= a(ab)b 
= (a.a) (b.b) 
= a2.b2 

(ab)2= a2.b2∀ a,b∈G 
Therefore a group G is an abelian (ab)2= a2.b2∀ a,b∈G 

THEOREM : In a group G , for a∈G a-1=a then show that G is abelian 
PROOF : given that G be a group , for a∈G a-1=a 

CLAIM : G is abelian 
Let a,b∈G 
a-1=a , b-1=b 
sincea,b∈G=> a,b∈G 
(a b)-1= ab 
b-1.a-1=ab 
b.a =ab 
therefore G is abelian 

NOTE : A semigroup (G,·) is a group  for an a.b∈G the eq ax=b and ya=b have solutions 
in 

G. 

THEOREM : A finite semi group (G,·) satisfying cancellation laws is a group 
PROOF: Let G ={a1 , a2,…an} be a finite semigroup with `n” distinct elements and 
cancellation laws hold in G 
CLAIM : (G,·) is a group 
Let a ∈G 

⇨ a. a1 , a.a2,…a.an∈G 
⇨ a. a1 , a.a2,…a.an are all distinct elements in G 

let b∈G 
⇨ b= a.ak for some unique ak in G 
⇨ a.ak=b 

ax=b has unique solution in G similarly , we get ya=b has a unique solution in G 
therefore (G,·) is a group 



THEOREM : If G is a group such that (ab)n=anbn for three consecutive positive 
integers ∀ a,b∈G then show that (G,·) is an abelian group . 
Proof : Given that G is a group let a,b∈G 
Let m,m+1,m+2 be three consecutive positive integers . 
Such that (ab)m=am.bm ----- (1) 

(ab) m+1=am+1.bm+1 --- (2) 

(ab) m+2=am+2.bm+2-------(3) 
Now consider equation (3) 
(ab) m+2=am+2.bm+2 

(ab) m+1.(ab)1=am+1.a.bm+1.b 
am+1.bm+1.ab=am.a.a.bm+1.b 
am. bm+1.a= am.a.bm+1 

⇨ am.bm.b.a =am.a.bm.b 
⇨ (ab)m,ba=(ab)m.a.b 
⇨ ba=ab (by L.C.L) 

therefore (G,·) is abelian 

 

Order of an elements of a group : 

● Let (G, .) be a group and a G then the order of the element a in G is defined as the 
least positive integer n such that an = e 

● In case such a positive integer does not exist say that the order of `a’ is infinite 
(or) zero 

● The order of `a” is defined as o(a) or | a | 

NOTE: 

am=e , m is a positive integer in G  O(a) ≤ M 

 
EXAMPLE: Consider the group G={ 1,-1} under usual multiplication . Find the 
order of each element in G . 
Solution: Given that G={1,-1} 
Clearly e=1 is the identify 

Let a=1 
(a)1 =(1)1=1 
(a)2=(1)2=1 
(a)3=(1)3=1 
. 
. 
. 
Therefore O(1)=1 



a=-1 
(a)1=(-1)1≠ e 
(a)2=(-1)2=1 
(a)3=(-1)3=-1≠ e 
(a)4= (-1)2=1 
O (-1)=2 

PROBLEM :Find the order of each element in the multiplication group G={ 1,- 
1,i,-i}. 
SOL: Given that G ={ 1,-1,i,-i} 
Clearly e=1 is the identity 
Let a=1 
(a)1 =(1)1=1 
(a)2=(1)2=1 
(a)3=(1)3=1 
. 
. 
. 
Therefore O (1)=1 
Let a=-1 
(a)1 =(-1)1=-1≠e 
(a)2=(-1)2=1 
(a)3=(-1)3=-1≠e 
(a)4= (-1)4=1 
. 
. 
. 
O (-1)=2 
Let a=i 
(a)1=(i)1=i 
(a)2 = (i)2=-1 
(a)3 = (i)3= (i)2.i=(-1)i=-i 
(a)4= (i)4=(i)2.(i)2=(-1) (-1) =1=e 
Therefore O(i)=4 
Let a=-i 
(a)1=(-i)1=-i 
(a)2 = (-1)2 = (-i) (-i) =i2=-1 
(a)3 = (i)3= (-i).(-i) (-i)=(-1)-i=i 
(a)4= (i)4=(i)2.(i)2=(-1) (-1) =1=e 
Therefore O (-i)=4 

 
PROBLEM: Find the order of each element of the group G { 1, ω, ω 2} under 
usual multiplications 



Solution: Given that G is ( { 1, ω, ω 2} , ·) is a group clearly e =1 is the identity 
Let a=1 
(a)1 =(1)1=1=e 
(a)2=(1)2=1=e 
(a)3=(1)3=1=e 
. 
. 
. 
Therefore 0(1)=1 
Let a= ω 
(a)1 =( ω)1= ω 1 
(a)2 =( ω )2= ω 2 
(a)3 = (ω )3= ω 3 = 1=e 
. 
. 
. 
Therefore 0(ω) =3 
Let a= ω 2 
(a) 1= (𝜔²ω )1= ω 2 
(a) 2= (ω 2)2 = ( ω 4= ω 3. ω = 1. ω = ω 
(a)3= (ω 2)3 =( ω 3)2 = (1)2 =1=e 
Therefore 0(ω 2) =3 

NOTE : 

 
(1) +n = addition modulo “ n” , n z+ 

a+n b= reminder when a+b is divisible by `n” 
example : 2+2 3=1 , 9+3 1=1 , 3+3 3=0, 8+2 6=0, 2+4 5=3 

(2) Xn= multiplication modulo `n”, n z+ 

 

aXnb= reminder when a b is divisible by `n’ 

example: 5x26=0, 3x33=0 , 5x3 3=0. 

(3) In additive notation ,na=c→ O(a) =n . 

 

 
PROBLEM :Find the order of each element of the group Z6={0,1,2,3,4,5} under 
the composition being addition modulo 6(or) +6 
Sol: Given that (Z6, +6) is a group clearly 

e=0 is the identity 



1+61 +6 1 +6 1 +6 1 +6 1 =0 
⇨ 6(1)=0=>0(1) =6 

2+62+62 =0 
⇨ 3(2)=0 => 0(2) =3 

3 +6 3=0 
⇨ 2(3)=0 => 0(3) =2 

4 +6 4 +6 4=0 
⇨ 3(4) =0=> 0(4)=3 

5 +6 5 +6 5 +6 5 +6 5 +6 5=0 
⇨ 6(5)=0 =>0(5)=6 

DEFINITION : 

Let a,b, z , we say that a/b ( a divides b ) , if b = a.q for some q z 

Example : (1) 2ǀ6 
Here a=2,b=6 

aǀb if b=a.q 
6=2(3) 

(2) 2ǀ7 
Here a=2 , b=6 

aǀb if b=a.q 

7≠2(q) , q  z 

Division algorithm : 

If a,b ,  z and a≠0 then there exist ( ) a unique integer `q” and `r” such 
that b=a.q +r. 
Example : 2ǀ7 =7=2.(3) +1 . 

 

THEOREM :If in a group G ,a G such that 0(a) ,then am=e  n/m 

PROOF: Given that G is a group and a  G 
Since O(a) =n 

Aleast a positive integer such that an=e… ...... (1) 
Assume that am=e 
Claim :nǀm 
By division algorithm M=n.q+r… ........ (2) 
am= an.q+r 
= an.q+ar=>an.q+r 

=(an)q.ar 
=1· ar 
am=.ar 

am=e , 0≤ r <n 
if r>0 then O(a) =r 



which is a contradiction to O(a) n 
r>0 
r=0 
from (2) ,m =n=>nǀm 
conversely suppose that nǀm 

m=n·q for some q 
CLAIM: am=e 
an=anq 

=(an)q 
=eq=e 
WELL ORDERING PRINCIPLE: 
Every non empty set of positive integer has a least element (number) 
THEOREM : Show that the order of each element in a finite group is finite and is 
less than are equal to the order of a group 

PROOF: Let G be a finite group and a  G 
CLAIM : O(a) is finite 

Since a, a G, · is a binary in G 

a2 G 

a3  G 
. 
. 
. 

By induction , an G  n 

a1,a2,….an G 
since G is finite 
let as=ar for some r,s∊z+ , r>s 
as.a-s=ar.a-s 

⇨ as-s=ar-s 

⇨ a0= ar-s 
⇨ ar-s=e, where r-s∊z+ 

let s= { am=e/m∊z+ }where r-s=m 

⇨ s≠  . 
from Well ordering prinicipe ,s has a least number say `n” 
Therefore n is the least positive integer  an=e 
0(a) is finite 
0(a) ≤0(G) : 
Suppose that 0(a) ≤ 0(G) 

⇨ 0(a) . 0(G) 
⇨ Let O(a)=n then n >O(G) 



⇨ Since a1,a2….an are an distinct 
⇨ O(G) =n 
⇨ n>n 
⇨ which is contradiction O(a) ≤ O(G) 

COMPOSITION TABLE : 
(1) Let G ={1,-1,i,-i} the G is a group 

 

· 1 -1 i -i 

1 1 -1 i -i 

-1 -1 1 -i 1 

I I -i -1 1 

-i -i i 1 -1 

BINARY / CLOSURE LAW: 
Since all that entries (elements) of the table are the elements of G 

ASSOCIATIVE LAW : 

(a.b) .c =a (bc)  a,b,c  G 
EXISTENCE OF IDENTITY: 

Since the top row is indentical with the row corresponding to 1 
EXISTENCE OF INVERSE : 
Inverse of 1=1 
Inverse of -1=-1 
Inverse of i=-1 
Inverse of –i =i 
Therefore G is a group . 
(2) Let G ={ 1,𝜔,𝜔2} then G is a group 

· 1 Ω ω 2 

1 1 Ω ω 2 

ω ω ω 2 1 

Ω ω 2 1 ω 

(1) BINARY /CLOSURE LAW: 
Since all the existence (elements) of the table are the elements of G 
(2) Associative law : 

(a,b).c=a.(b.c)  a,b ,c ∊G 



(3) EXISTENCE OF IDENTITY : 
Since the top row is identical with the row corresponding to 1 

(4)EXISTENCE OF INVERSE : 
Inverse of 1=1 

Inverse of 𝜔=𝜔2 
Inverse of 𝜔2=𝜔 
Therefore G is a group 
1.) Write down the binary operation table for which addition modulo 6(+6) of 
the set z6 = { 0,1,2,3,4,5} 

Given that z6={ 0,1,2,3,4,5} 
(z6 , +6) 

+6 0 1 2 3 4 5 
0 0 1 2 3 4 5 
1 1 2 3 4 5 0 
2 2 3 4 5 0 1 
3 3 4 5 0 1 2 
4 4 5 0 1 2 3 
5 5 0 1 2 3 4 

 
2.) Write down the binary operation table for which x4 ( multiplication modulo 
4) of the set z4 ={ 0,1,2,3}. 

Given that z4={ 0,1,2,3}. 
(z4, x4) 

 
 

 

X4 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 0 2 

3 0 3 2 1 

3.) Write down the binary operation table for which user multiplication table for 
which user multiplication of the Set a={1,-1} 

· 1 -1 

1 1 -1 

-1 -1 1 



 



 

 

 

 

 

COMPLEX : 

UNIT II 

Sub Groups 

Any subset of a group G is called a complex of G . 

Example : 2z is of complex of z 

NOTE: 

(1) If M , N are complex’s of a group G then (M.N)-1 = N-1. M-1 

(2) If H is a complex of G then H-1 = { h-1/h∈H } 

SUB GROUP: 

Let G be a Group . A non empty Complex H of a Group G is said to 

be a Subgroup of G if H is a group with respect to the operation `·’(dot) in G . 

Ex: 

(1) (2z , +) is a sub group of (z, +) 

(2)(z ,+) is a sub group of (Q,+) 

(3) (Q ,+) is a sub group of (R,+) 

NOTE : 

(1) If H is a Subgroup of G then the identity element in H and G are same . 

Ex: 

`0’ is the identity in z with respect to the SubGroup of 2Z of Z ,0 is 

the identity element in 2z. 

(2) If H is a SubGroup of a group G and a∈G then the inverse of a in G is same 

as the inverse of a in H 

Ex: 



-z is the common inverse of z in both z and 2z 

 

 

 

 

NOTE: 

(1) If H is any sub group G then H-1=H 

(2) H is a sub group of a group G HH-1=H 

(3) If H is any subgroup of a group G then H.H =H 

 

 

THEROEM: 

If H and K are two subgroups of a group G, then HK is a 

subgroup of G  HK =KH 

PROOF: 

Given that H and K are two subgroups of a group G 

NECESSARY CONDITION: 

⇒Suppose that H.K is a subgroups of G 

CLAIM: HK=KH 

By known theorem (HK)-1= HK 

=>K-1 H-1=HK 

=> KH =HK 

=> HK =KH 

SUFFICIENT CONDITION: 

Suppose that HK=KH 

CLAIM: HK is a subgroup of G 

Consider (HK) (HK)-1 = (H K ) (K-1.H-1) 



= H (K K-1H-1) 

= H(K K-1)H-1 

= (HK) H-1 

= ( KH ) H-1 

= K(H H-1) 

= KH 

=HK 

Therefore HK is a subgroup of group G. 

THEROEM : 

A non empty set complex H is a SubGroup of G 

 (1) a,b∈H ⇒ a.b ∈H 

(2) a∈H⇒a-1∈H. 

PROOF: 

NECESSARY CONDITION: 

Suppose that H is a SubGroup of G 

CLAIM: (1) and (2) holds 

Since (H ·) its self a group 

(1) For a,b ∈H 

a.b ∈ 𝐻 

for a ∈H,H is a group 

=>a-1 ∈ H. 

SUFFICIENT CONDITION: 

Suppose that (1) a,b ∈ 𝐻 => a.b ∈ 𝐻 



(2) a ∈H⇒ a-1 ∈ H 

CLAIM : H is a SubGroup of a group G i.e, to prove that (H,·) itself a group 

ASSOCIATIVE ; Let a,b,c ∈ 𝐻 

⇒a,b,c ∈ 𝐺 

⇒ (a.b).c= a.(b.c) 

IDENTITY: Since a ∈ 𝐻 ⇒a-1 ∈ 𝐻 

By (1) a,a-1 ∈H 

e ∈H 

Therefore (H,·) itself is a group 

Therefore H is a subgroup of G . 

THEROEM : 

A NON Empty Complex H is a SubGroup of a group G 

a,b ∈H then a,b-1 ∈H . 

PROOF : 

NECESSARY CONDITION: 

Suppose that H is a SubGroup of a group (G .) 
 

CLAIM :  

 

a,b ∈ H ⇒ a,b-1 ∈  H 

Since (H ·) itself is a group 

Let a,b ∈H 

⇒a ∈ 𝐻, 𝑏-1 ∈ 

⇒a,b-1 ∈H 

SUFFICIENT CONDITION: 

suppose that 



 

 

CLAIM: 

a,b ∈ H⇒ a b-1 ∈H ----- (1) 

 

 

H is SubGroup of G (i.e) we have to prove that (H .) itself a Group 

(1) ASSOCIATIVE : Let a,b,c ∈ H 

⇒a,b,c ∈ 𝐺 

⇒ (a.b).c =a.(b.c) 

(2) IDENTITY : by (1) ,a, a ∈ 𝐻 ⇒ a.a-1 ∈H 

⇒ e ∈ 𝐻 

(3) INVERSE : By (1) e,a ∈ 𝐻 ⇒ e.a-1 ∈ 𝐻 

⇒a-1 ∈H 

(4) BINARY OPERATION : 

Let a,b ∈ 𝐻 

⇒ a ∈ 𝐻,b-1 ∈ 𝐻 

by (1) ,a.(b-1)-1 ∈ 𝐻 

⇒ a.b ∈ 𝐻 

Therefore (H,·) itself is a group 

Therefore H is a subgroup of G . 

 

THEROEM : 

IF H1,H2 are two SubGroup G then H1∩ H2 is also a 

SubGroup of G . 

PROOF : 

Given that H1 and H2 are two SubGroups of a group G 

 

CLAIM: H1∩ H2 is a SubGroup of G 



clearly e ∈ 𝐻1∩H2 

⇒ H1 ∩ H2 is a non empty subset 

Let a,b ∈ 𝐻1 ∩ H2 

⇒ a,b ∈ 𝐻1 and a,b ∈ 𝐻2 

⇒ a.b-1 ∈ 𝐻1and a.b-1 ∈ 𝐻2 

⇒ a.b-1 ∈ 𝐻1∩H2 

By known theorem , 

𝐻 1∩H2 is a subgroup of G 

 

 

PROBLEM : 

By an Example to show that the union of two Subgroup’s of 

a group need not be a subgroup . 

Solution: 

consider 2z & 3z are two Subgroups’ of a group (z,+ ) 

Now 2z.∪ 3z ={0,± 2, ±3, ±4, ±6…} 

Let 3,2 ∈ 2z ∪3z 

⇒ 3+2=5 not belongs to 2z ∪ 3z 

Therefore 2z∪ 3z need not be a subgroup 

 

THEROEM : 

If H1and H2 are two subgroups of a group G, then 𝑯1∪H2 is a 

subgroup of G  𝑯1⊆H2 (or) 𝑯2⊆H1 

PROOF: 



Given 𝐻1𝑎𝑛𝑑 H2 are two subgroups of G 

SUFFICIENT CONDITION: 

Suppose 𝐻1⊆H2 (or) 𝐻2⊆H1 
 

CLAIM:  

 

𝐻1∪H2 is a subgroup of G 

If 𝐻1⊆H2 ⇒ 𝐻1∪H2=H2 is a SubGroup of G 

If 𝐻2⊆H1⇒ 𝐻1∪H2= H1 is a SubGroup of G 

Therefore 𝐻1∪H2 is a SubGroup of G 

NECESSARY CONDITION: 

Suppose 𝐻1∪H2 is a SubGroup of G 

CLAIM : 𝐻1⊆H2 (or) 𝐻2⊆H1 

If possible suppose that 𝐻1⊊H2 (or) 𝐻2⊊ H1 

Since 𝐻1 ⊊H2 ⇒ ∃ a ∈ 𝐻1 ∋ a not belngs to H2 

𝐻2⊊H1⇒ ∃ b ∈H2 ∋ b not belngs to H1 

Since a ∈ 𝐻1, b ∈ 𝐻2⇒ a,b ∈ 𝐻1∪H2 

⇒ab ∈ 𝐻1∪H2 

⇒ab ∈ 𝐻1 (or) ab ∈H2 

Since a-1 ∈ 𝐻1 , ab ∈ 𝐻1 

⇒ a-1(ab) ∈ 𝐻1 

⇒ a-1 a.b ∈H1 

⇒ e.b ∈ 𝐻1 

⇒ b ∈ 𝐻1 

which is a contradiction to b does not belongs to H1 similarly , we array a 

contradiction to a does not belongs to H2. 



Therefore 𝐻1⊆H2 (or) 𝐻2⊆H1. 

THEROEM: 

A finite non empty complex H is a SubGroup of a Group G 

a,b ∈ 𝑯 for ab∈ 𝑯 

PROOF: 

NECESSARY CONDITION: 

Suppose that H is a SubGroup of a Group (G,·) 

i.e ,( H .) itself is a group 

CLAIM: a,b ∈ 𝑯 ⇒ ab ∈ 𝑯 

Let a,b ∈ 𝐻 

⇒a.b ∈ 𝐻 

SUFFICIENT CONDITION: 

Let a,b ∈ 𝐻-----(1) for a,b ∈ 𝐻 

CLAIM: H is a subgroup of G 

(1) from (1) , . is a Binary operation on H 

(2) ASSOCIATIVE LAW: 

Let a,b,c ∈ 𝐻 

⇒a,b,c ∈ 𝐺 

⇒a.(bc)=(ab).c 

(3) IDENTITY : Let a ∈ 𝐻 

Since a,a ∈ 𝐻 => a2 ∈ 𝐻 

a3 ∈ 𝐻 

. 

. 



. 

an ∈ 𝐻 for n ∈ 𝑧+ 

Let ar=as for some r, s ∈ 𝑧+, r>s 

⇒ar.a-s =as.a-s 

⇒ar-s =as-s 

 

⇒ar- s = a° =e 

⇒ ar-s=e 

⇒e ∈ 𝐻 

(4) INVERSE : Let a ∈ 𝐻 

Clearly r-s-1 ∈ 𝑧+ => ar-s-1 ∈ 𝐻 

Also a1.(ar-s-1) = ar-s=e 

Therefore ar-s-1 ∈ 𝐻 is the inverse of `a’ 

Therefore H itself a group 

Therefore H is a subgroup of G 

NORMALIZER OF AN ELEMENT IN A GROUP : 

If G is a group and a ∈ 𝐺 then the set N (a) ={x ∈ 𝐺 / ax=x a} 

is called the NORMALIZER of `a’ in G. 

 

CENTRAIZER (OR) CENTRE OF A GROUP: 

If G is a Group then the set Z (G) (or) Z={ a ∈ 𝐺/ax=xa ∈ 𝐺} is 

called Centre of a Group . 
 

 

THEROEM: 

 

 

PROOF: 

 

 

Show that N (a) of `a’ is a sub group of G . 

CLAIM: N (a) is a subgroup of G 



Let a ∈ 𝐺 

Since a .e=e .a 

⇒ e ∈ 𝑁(a) 

Therefore N (a) ≠∅ ⊆ G 

(1) Let x ,y ∈ 𝑁 (a) 

⇒a x= xa, ay=y a 

Now (x y ) a=x (y a) 

= x (ay) 

= (x a) y 

= (ax) y 

(x y) a =a(x y) 

⇒x y ∈ 𝑁(𝑎) 
 
 
 

(2) Let x ∈ 𝑁(a) 

⇒x a=ax 

⇒x-1(x a)x-1=x-1(ax)x-1 

⇒ (x-1x) a x-1= x-1a (x x-1) 

 

⇒ e. a. x-1= x-1.a.e 

⇒ .a. x-1= x-1.a 

⇒x-1 ∈ 𝑁 (a) 

Therefore N(a) is a SubGroup of G . 

THEROEM: 

Show that the centre Z(G) is a subgroup of G 



PROOF : 

Let Z = {a ∈ 𝐺 /ax=xa ∀ x ∈ 𝐺 } 

CLAIM: Z is a SubGroup of G 

Let x ∈ 𝐺 

Since x. e = e .x 

⇒e ∈ 𝑍 

Therefore Z ≠∅ ⊆G 

(1) Let a,b ∈ 𝑍 

⇒ a x=xa; bx=x b 

Now (a b) x=a (b x) 

= a(x b) 

= (ax) b 

(a b)x =(x a)b 

(a b)x = x(a b) 

⇒ ab ∈ 𝑍 

(2) Let a ∈ 𝑍 

⇒ x a=a x 

⇒ a x=x a 

⇒ a-1(ax) a-1=a-1(x a) a-1 

⇒ (a-1a) (xa-1) = a-1x (aa-1) 

⇒ e.xa-1=a-1x.e 

⇒ xa-1=a-1x 

⇒ a-1 ∈ 𝑍 

Therefore Z is a subgroup of G. 



COSETS AND LAGRANGE’S THEOREM: 

DEFINITION: 

Let H be a subgroup of a group G and a∈G then this set a.H ={ a.h/h ∈H} 

is called left coset of H in G & the set H.a ={ h.a /h∈H } is called Right coset of H 

in G . 

NOTE: 

If H is a subgroup of an abelian group G then a.H=H.a . 

i.e , every left coset is a right coset . 

RESULT: 

Let H be a subgroup of G and a,b ∈G 

Then 

(1) a∈H ⇔a.H=H 

 

a∈H ⇔H.a=H 

(2) a∈Hb ⇔ H.a=H.b 

a∈bH ⇔ a.H =b.H 

(3)H.a =H.b ⇔ a.b-1∈H 

a.H =b.H ⇔ a-1.b ∈H 

THEROEM: 

Any two left cosets of a subgroup of a group are either disjoint 

(or) identical . 

PROOF: 

Let H be a subgroup of a group G and a,b∈G. 



 

 

CLAIM : 

Let aH,bH be two left cosets of H in G 

 

 

aH ∩ bH =∅ (or) aH=bH 

Suppose that aH∩bH ≠∅ 

To prove that aH =bH 

Let c∈aH∩bH 

⇒c∈ aH and c∈bH 

⇒cH =aH and cH= bH 

⇒aH=cH=bH 

⇒aH=bH 

Therefore aH and bH are identical . 

THEROEM : 

Any two right cosets of a subgroup of a group either disjoint 

(or) identical . 

PROOF : 

Let H be a subgroup of a group G and a,b∈G 

Let Ha,Hb be two Right cosets of H in G 

CLAIM: 𝑯𝒂 ∩ 𝑯𝒃=∅ 

 
Suppose that 𝐻𝑎 ∩ 𝐻𝑏≠∅ 

To prove that Ha =Hb 

Let c ∈ Ha∩Hb 

⇒c∈Ha and c∈ 𝐻𝑏 



⇒Hc=Ha and Hc=Hb 

⇒Ha=Hc=Hb 

⇒Ha=Hb 

Therefore Ha and Hb are identical . 

 

 

THEROEM : 

If H is any subgroup of a group G then there exists a bijection 

between any two left cosets of H in G . 

PROOF : 

Given that H is a subgroup of a G and a,b ∈G . 

Let aH,bH be two left cosets of H in G 

Define f: aH →bH by (ah) =bh, for ah∈ 𝑎𝐻 

f is one –one: 

Let ah1,ah2 ∈ 𝑎𝐻for h1,h2∈H 

Consider f(ah1) =f(ah2) 

⇒bh1=bh2 

⇒h1=h2 

⇒ah1=ah2 

f is on –to: 

Let bH ∈bH 

⇒ h∈H 

⇒ a∙h ∈ 𝑎𝐻 

by (1) , f(ah) =bh 



Therefore, f is onto 

 

Therefore, f:aH→bH is a bijection . 

NOTE: 

By above theorem , concludes that any two left (right) cosets have the 

same no.of elements 

 

 

 

 

THEROEM : 

If H is a subgroup of a group G then there is a one to one 

correspondece between the set of all distinct left cosets of H inG and the set of all 

disrinct Right cosets of H inG . 

PROOF: 

Let G1=set of all distinct left cosets of H in G . 

G2 = Set of all distinct Right cosets of H in G 

Define f:G1→G2 by f(aH) =H.a-1, for aH∈G 

f is well defined and one-one : 

Let aH ,bH ∈G1 

Let aH =bH 

⇔ a-1.b∈ H 

⇔ a-1[(b-1)]-1 ∈H 

⇔ Ha-1=Hb-1 

⇔ f(aH) =f(bH). 

f is onto : 



Let Ha ∈ G2 

⇒a∈ 𝐺 

⇒a-1∈ 𝐺 

⇒a-1.H∈ 𝐺, 

Therefore f(a-1H) =H(a-1)-1 [by (1) ] 

=Ha 

Therefore f is onto 

Therefore f:G1→ G2 is a bijection 

 

 

THEROEM : 

State and Prove Lagrange’s Theorem. 

STATEMENT : 

If H is a subgroup of a finite group G then O(H) | O(G) 
 

PROOF :  

 

Given that H is a subgroup of a finite group G 

⇒H is finite & the no.of right cosets of H in G is finite 

Let Ha1,Ha2…., Hak be the distinct right cosets of H in G . 

We know that every Right cosets of 

O(Ha1)=O(Ha2)=….=O(Hak)=o(H) 

Since G is finte , the right cosets partitions into equivalence classes . 

Therefore G =Ha1∪ Ha2∪ … .∪ Hak 



⇒ O(G) =O[ Ha1∪Ha2∪…∪ Hak] 

=O(Ha1)+O(Ha2) + …+O(Hak) 

⇒ O(G)=O(H) +O(H)+…[ K times ] 

⇒  O(G) =O(H).k 

⇒  O(H) | O(G). 



 

 

 

 

 

 

 

 

 

 

Definition: 

UNIT : III 

Normal Subgroups 

 

 

, x ϵ G 

A Subgroup H of a Group G is said to be Normal in G if x h x-1 ϵ H, ∀ h ϵ H 

 

(or) 

X H x-1 ⊆ H ∀ x ϵ G and it is denoted by H 𝝰 G 

Theorem : 

Show that Every Subgroup of an abelian group is Normal 

Proof : let H be a Subgroup of an abelian group G 

Claim : H 𝝰G 

 
 
 
 
 
 
 
 
 
 
 

 
Theorem : 

Let h ϵ H ,x ϵ G 

x h x-1 =(hx)x-1 

=h(xx-1) 

=he 

∴ x h x-1 

∴ x h x-1ϵH 

There fore H 𝝰G 



A Subgroup H of a Group G is Normal in G ⇔ xHx-1=H , ∀ x ϵ G 

(or) 

H 𝝰 G ⇔ x H x1= H, ∀ xϵG 

Proof : 

Necessary condition : let H 𝝰G 

By definition x Hx-1 ⊆H------(i) ∀ x ϵ G 

Claim : x H x-1=H ∀ x ϵ G 

From (i) x- 1H ( x-1)-1 ⊆ H ∀ 

X ( x-1 H x) x-1 ⊆ x H x-1 

( x x-1) H( x x-1) ⊆ x H x-1 

e (H x) x-1 ⊆ x H x-1 

H ( x x-1 ) ⊆ x H x-1 

H e ⊆ x H x-1 

H ⊆ x H x-1 ∀ x ϵ G ------ (ii) 

From (i) and (ii) 

x H x-1=H , ∀ x ϵ G 

Sufficiant Condition : 

Suppose that x H x-1=H------(iii) ∀ x ϵ G 

Claim : H 𝝰G 

From (iii) it is clear 

x H x-1 ⊆ H ∀ x ϵ G 

There fore H 𝝰 G 



Theorem : 

A Subgroup H of a group G is Normal in G ⇔ Each left coset of H in G 

is a right coset of H in G 

Proof : 

Necessary condition : 

Let H 𝝰 G 

Claim : Each left coset is a right coset of H in G 

By known theorem x H x-1=H ∀ x ϵ G 

⇒ x H x-1 x = H x 

⇒ x H e=H x 

⇒ x H = H x , ∀ x ϵ G 

Therefore Each left coset is a right coset of H in G 

Sufficiant condition : 

Suppose that Each left coset is right coset of H in G 

That is X H = H X ........ (i) 

Claim : H 𝝰 G 

From (i) ,XH=HX 

⇒ X H X-1 =H X X-1 

⇒ X H X-1 = He 

⇒ X H X-1 = H , ∀ x ϵ G 

There fore H 𝝰 G 

Theorem : 



A Subgroup H of a group G is a Normal Subgroup of G ⇔ The 

product of two right cosets of H in G is again a right coset of H in G 

Proof : 

Neccessary Condition : 

Let H 𝝰 G 

Claim : Let a,b,ab ϵ G 

⇒Ha ,Hb,Hab ϵ G are right cosets of H in G 

Consider (Ha) (Hb) =H (aH) b 

=H (Ha) b 

=(HH) ab 

=Hab is a right coset 

∴ The product of two right cosets of H in G is again a right coset of 

H in G 

Sufficiant condition : 

Let (Ha) (Hb) =Hab ....... (i) 

Claim : H 𝝰 G 

Let xϵG ,hϵH 

Consider xhx-1 = (ex) h x-1 ϵ Hx H x-1 

=H x x-1 

 
= He 

 
=H 

 

⇒ x h x-1 ϵ H 

∴ By definition , H is a Normal Subgroup of G 



 

also 

Theorem: 

Similarly , we can prove the theorem for left cosets 

 

 

 

Show that the intersection of two Normal Subgroups of a group G is 

again a Normal Subgroup of G 

proof : 

Let H and K be two Normal Subgroups of group G 

Claim : H ∩ K 𝝰 G 

Clearly H ∩ K is a subgroup 

Let x ϵ G ,h ϵ H ∩ K 

⇒  x ϵ G , h ϵ H 

⇒ x h x-1 ϵ H ........ (i) 

x ϵ G , h ϵ K 

⇒ x h x-1 ϵ K........ (ii) 

From (i) and 

∴  x h x-1 ϵ H ∩ K 

∴ H ∩ K 𝝰 G 

Simple group : 

A Group G is said to be Simple if it has no proper Normal 

Subgroups 
 
 

 

Note : 

 

{e} 

 

 

G is Simple if and only if G has no Normal Subgroups other than G and 



Theorem: 

 

 

Proof : 

0 

 

Prove that Every group of prime order is simple 

Let G be a Group of Prime order P 

Let N be a Normal Subgroup of G 

By Lagrange’s theorem 

O(N) / O(G) 

⇒ O(N) / P 

⇒ O(N) =1 (or) O (N) =P 

If O(N) =1 ,then N ={e} 

If O(N) =P ,then N = G 

∴G has no Proper Normal Subgroups and hence, G is Simple 

Hence, Every Group of Prime Order is Simple 



 

 

 

 

UNIT -4 

HOMOMORPHISMS 

DEFINITIONS:- 

HOMOMORPHISM: - Let G,Gˈ be two groups. A mapping f: G →Gˈ is called a 

“Homomorphism” if f(ab)=f(a) · f(b) ∀ a,b∈G. 

HOMOMORPHIC IMAGE :- If f:G→Gˈis a homomorphism then the set 

f(G)={f(a)/a∈G} is called a “Homomorphic Image Of G”. 

MONOMORPHISM: - A mapping f:G→Gˈ is called a “Monomorphism” 

if (I) f is homomorphism (II)f is 1-1. 

EPIMORPHISM: - A mapping f:G→Gˈ is called a “Epimorphism” if 

(i)f is homomorphism and (ii)f is onto. 

Isomorphism: - A mapping f: G→Gˈ is called an “Isomorphism” if (i) f is 

homomorphism and (ii) f is both 1-1 and onto. 

Endomorphism: - A homomorphism f: G→G is called an “Endomorphism”. 

Automorphism :- A mapping f: G→G is called an “Automorphism” if (i) f is 

homomorphism (ii) f is both 1-1 and onto. 

Isomorphic: - Two graphs G and Gˈ are said to be “isomorphic” if there exists an 

isomorphism of G and Gˈ we write G≈Gˈ. 



Theorem:- Let (G, · ) and (Gˈ, · ) be two groups Let f be a homomorphism from G 

onto Gˈ Then  (i)f(e)=eˈ where e be the identity in G and eˈ be the identity in Gˈ 

(ii)f(aˉˈ)={f(a)}.ˉˈ 

Proof:- Given that (G, · ) and (Gˈ, · ) be two groups and f:G →Gˈ is a 

homomorphism. 

i.e., f(ab)=f(a).f(b) ∀ a∈G 
 

 
(i)To prove f(e)=eˈ 

f(e·e)=f(e) 

⇒ f(e).f(e)=f(e).eˈ 

⇒ f(e)=eˈ 

ii) To prove f(aˉˈ) = (f(a))ˉˈ 

= f(e). By(i) f(e)=eˈ 

= eˈ 

⇒ f(aˉˈ).f(a) = eˈ 

Therefore f(aˉˈ)=(f(a))ˉˈ 

i.e The inverse of f(aˉˈ) is f(a). 
 

 
Theorem :- If f is a homomorphism from a group (G, · ) into (Gˈ, · ) Then 

(f(G), · ) Is a subgroup of Gˈ (or) the homomorphic Image of a group is a group. 

Proof:- Given that f: G→Gˈ is a homomorphism 

The homomorphic Image of G is f(G)={f(a)/a∈G} 

To Prove that f(G) is a subgroup of Gˈ 



Clearly f(G) ⊆Gˈ 

Let aˈ,bˈ∈ f(G) 

Then there exists a,b∈G such that f(a)=aˈ and f(b)=bˈ 

Now aˈ (bˈ)ˉˈ= f(a)·(f(b)) ˉˈ 

= f(a) ·f(bˉˈ) 

= f(abˉˈ) 

∈ f(G) 

⇒aˈ(bˈ)ˉˈ∈ f(G) 

Therefore aˈ,bˈ∈f(G)ˈ 

Then aˈ(bˈ)ˉˈ∈f(G) 

∴f(G) is a subgroup of Gˈ 
 

 
Theorem:- Every Homomorphic Image of an abelian group is abelian. 

Proof:- Let (G, · ) be an abelian group and (Gˈ, · ) be a group 

Let f:G→Gˈ be a homomorphism 

Let Gˈ be the homomorphic Image of G i.e Gˈ=f(G) 

To prove that Gˈ is abelian 

Since G is abelian ⇒ab=ba for a,b∈G 

Let aˈbˈ∈Gˈ 

Then there exists a,b∈G ∋ f(a)=aˈand f(b)=bˈ 

aˈbˈ= f(a)f(b) 

= f(ab) 



= f(ba) 

= f(b) · f(a) 

= bˈaˈ 

⇒aˈbˈ= bˈaˈ 

Therefore Gˈ is abelian 
 

 
Kernel of a homomorphism:- 

If f is a homomorphism of a group G into a group Gˈ then the kernel of f is defined 

by Ker f={x∈G/f(x)=eˈ} where eˈ is the identity in Gˈ . 

Theorem: - If f is a homomorphism of a group G into a group Gˈ then the 

kernel of f is a normal subgroup of G. 

Proof:- Given that G and Gˈ are two groups 

Also f:G→Gˈ be a homomorphism 

To prove that ker f is a normal subgroup of G we know that 

Ker f={x∈G/f(x)=eˈ} where eˈis the identity in Gˈ 

Since e∈G ⇒ f(e)=eˈ , e∈ker f 

⇒ker f≠∅⊆G 

First we Prove ker f is a subgroup of G 

Let a,b∈ ker f 

⇒f(a)=eˈ and f(b)=eˈ 

Now f(abˉˈ)= f(a) ·f(bˉˈ) 

= f(a) ·(f(b))ˉˈ 



= eˈ.(eˈ) ˉˈ 

= eˈ.eˈ 

= eˈ 

⇒f(abˉˈ)=eˈ 

⇒abˉˈ∈ ker f 

Therefore ker f is a subgroup of G. 

Now we Prove ker f is normal 

Let x∈G and a∈ ker f ⇒f(a)=eˈ 

Now f(xaxˉˈ)= f(x)f(a)f(xˉˈ) 

= f(x).eˈ.f(xˉˈ) 

= f(x).f(xˉˈ) 

= f(xxˉˈ) 

= f(e)=eˈ 

⇒  f(xaxˉˈ)=eˈ 

⇒xaxˉˈ∈ ker f 

∴ ker f is a normal subgroup of G. 
 

 
Theorem: - The necessary and sufficient condition for a homomorphism f of a 

group G onto group Gˈ with kernel K to be an isomorphism of G into Gˈ is that 

k={e}. 

Proof: - Let f be a homomorphism of a group G onto a group Gˈ. 

Let e,eˈ be the identities in G,Gˈ respectively. 



Let k be the kernel of f. 

i.e., K = Ker f = {x∈G/f(x)=eˈ} 

Suppose f:G→Gˈ is an isomorphism 

To prove that k = {e}. 

Let a∈k 

⇒f(a)=eˈ. 

⇒f(a)=f(e) 

⇒a=e for a∈G 

Therefore e is the only element of k 

⇒K = {e} 

Conversely, suppose K = {e} 

To Prove that f is an isomorphism. 

Since f is onto homomorphism. 

To prove f is one-one 

Let a,b∈G 

f(a) = f(b) 

⇒ f(a)(f(b))ˉˈ= f(b) (f(b))ˉˈ 

⇒ f(abˉˈ) = e 

⇒ abˉˈ∈ K = {e} 

⇒ abˉˈ= e 

⇒ abˉˈb = eb 

⇒ ae = b 



⇒ a = b 

∴ f is one-one 

Therefore f is an Isomorphism of G onto Gˈ. 
 

 
Theorem:- Let f be a homomorphism of a group G into Gˈ then f is 

Monomorphism ⇔ ker f ={e} where e is the identity in G. 

Proof :- Let f be a homomorphism of a group G into Gˈ 

We Know that Ker f={x∈G/f(x)=eˈ} 

Suppose f: G→Gˈ is Monomorphism 

To Prove that ker f={e} 

Let a∈ker f 

⇒ f(a) = eˈ. 

⇒ f(a) = f(e) 

⇒a = e for a∈G 

∴ e is the only element of ker f 

⇒ ker f={e} 

Conversely, suppose ker f={e} 

To prove that f is Monomorphism 

Since f is homomorphism. 

To prove f is one-one . 

Let a,b∈G 

f(a)=f(b) 



⇒ f(a)·(f(b))ˉˈ= f(b)·(f(b))ˉˈ 

⇒ f(a)f(bˉˈ) = e 

⇒ f(abˉˈ) = e 

⇒ abˉˈ∈k = {e} 

⇒ abˉˈ= e 

⇒ abˉˈb = eb 

⇒ ae = b 

⇒ a = b 

∴f is one-one 

∴ f is an monomorphism of G into Gˈ. 
 

 
Theorem:- Let G be a group and N be a normal subgroup of G. Let f be a 

mapping from G to G/N defined by f(x)=Nx for x∈G . Then f is a 

homomorphism of G onto G/N and ker f = N 

Proof:- Given that G is a group and N is a normal subgroup of G. 

Let f be a mapping from G to G/N defined by f(x)=Nx (1) for x∈G . 
 

 
(i) f is a homomorphism :- 

Let a,b∈G 

f(ab)= Nab ∴by(1) 

= Na·Nb (∵Ha·Hb=Hab) 

= f(a).f(b) 



⇒ f(ab) = f(a).f(b) 

Therefore f is a homomorphism. 

(ii) f is onto :- 

Let Nx∈ G/N for x∈G 

Since x∈G 

Now f(x)=Nx ∴by (1) 

∴ f is onto 

(iii) ker f=N :- 

The identity of the quotient group G/N is N 

⇒ ker f={x∈G/f(x)=N} 

Let k∈ker f 

⇒ f(k)=N 

By (1) f(k)=Nk 

⇒ N = Nk 

⇒ k ∈ N 

⇒ ker f ⊆N (1) (H = hH, h∈H) 

Let n∈N 

We have f(n) = Nn = N 

⇒f(n)=N 

⇒ n∈ker f 

⇒ N⊆ker f (2) 

From (1) and (2) we get ker f =N 



Definition: - The mapping f:G→G/N such that f(x)=Nx for all x∈G is called 

Natural (or) “canonical homomorphism”. 

PROBLEM: 

1. If for a group G, f:G→G is given by f(x)=x² ∀ x∈G is a homomorphism then 

prove that G is abelian. 

Proof : Given that f:G→G is a homomorphism and is defined by 

f(x)=x² ∀ x∈G 

To Prove G is a abelian 

Let x,y ∈ G ⇒ f(x)=x²,f(y)=y² 

xy∈G⇒ f(xy)=(xy)² 

⇒ f(x)·f(y)=(xy)(xy) 

⇒ x²·y²=(xy)(xy) 

⇒ (x·x)(y·y)=(xy)(xy) 

⇒ x (xy)y=x(yx)y 

⇒xy=yx 

∴ G is abelian. 
 

 
Theorem: - Let G be a multiplicative group and f:G→G be a mapping such 

that for a∈G,f(a)=aˉˈthen prove that f is one-one onto. Also prove that f is a 

homomorphism iff G is commutative 

Proof:- Given that f:G→G is a mapping defined by f(a)=aˉˈ for all a∈G 

(i) f is one –one :- Let a,b∈G 



f(a) = f(b) 

aˉˈ = bˉˈ 

(aˉˈ)ˉˈ = (bˉˈ)ˉˈ 

a = b 

∴ f is one - one 

(ii) f is onto :- Let x∈G 

Then xˉˈ∈G such that f(xˉˈ) = (xˉˈ) ˉˈ 

= x 

⇒ f(xˉˈ) = x 

∴ ∃ xˉˈ∈G ∋ f(xˉˈ)=x 

⇒ f is onto 

(iii) Suppose f is a homomorphism :- 

To prove G is commutative 

Let a,b ∈G ⇒f(a)= aˉˈ, f(b)=bˉˈ 

Since f(ab)= f(a)·f(b) 

⇒ (ab)ˉˈ =aˉˈ·bˉˈ 

⇒ bˉˈaˉˈ=aˉˈ·bˉˈ 

⇒ (bˉˈaˉˈ)ˉˈ=(aˉˈbˉˈ)ˉˈ 

⇒ (bˉˈ)ˉˈ(aˉˈ)ˉˈ=(aˉˈ)ˉˈ(bˉˈ)ˉˈ 

⇒ ba = ab 

⇒ ab = ba 

Conversely, suppose G is commutative 



i.e. a,b∈G ⇒ab=ba 

To prove f is a homomorphism 

Now f(ab)=(ab)ˉˈ 

= bˉˈaˉˈ 

= aˉˈbˉˈ 

= f(a)·f(b) 

⇒f(ab) = f(a)·f(b) 
 

 
Fundamental theorem of homomorphism of groups:- 

Statement:-If f:G →Gˈ is a homomorphism and onto with kernel K, then 

Prove that G/K ≈Gˈ. 

OR 

Every homomorphism Image of a group G is “Isomorphic” to some “quotient 

group” of G. 

Proof:- Let f be a homomorphism of a group G onto group Gˈ. 

Then f(G)=Gˈ 

⇒ K is a normal subgroup of G. 

⇒ G/K is a quotient group. 

for a∈G , Ka∈G/K and f(a)∈Gˈ 

Now Define a mapping ⌀ : G/K → Gˈ by ⌀(Ka)=f(a) for a∈G 

⌀ is well defined:- 

Let Ka,Kb∈G/K 

Now Ka = Kb 



abˉˈ∈K 

⇒ f(abˉˈ) = eˈ 

⇒ f(a)·f(bˉˈ) = eˈ 

⇒ f(a)·(f(b))ˉˈ f(b) = eˈf(b) 

⇒ f(a) eˈ = eˈ f(b) 

⇒ f(a) = f(b) 

⇒ ⌀(Ka) = ⌀(Kb) 

∴ ⌀ is well defined 

⌀ is one-one :- 

Let Ka,Kb ∈ G/K 

⌀(Ka)=⌀(Kb) 

⇒ f(a ) = f(b) 

⇒ f(a) eˈ= eˈf(b) 

⇒ f(a)·(f(b))ˉˈ f(b) = eˈ f(b) 

⇒ f(a)·(f(b))ˉˈ= eˈ 

⇒ f(a)·f(bˉˈ) = eˈ 

⇒ f(ab)ˉˈ= eˈ 

⇒ abˉˈ∈ K 

⇒ Ka = Kb 

∴ ⌀ is one-one. 

⌀ is onto :- 

Let x∈Gˈ 



Since f:G→Gˈ is onto 

⇒∃ a∈G ∋ f(a)=x 

Since a∈G then ka ∈ G/K 

Now ⌀(Ka) = f(a) = x 

⇒ ⌀(Ka) = x 

∴ ⌀ is onto 

⌀ is a homomorphism:- 

Let Ka,Kb ∈ G/K 

⌀ (Ka·Kb) = ⌀(Kab) 

= f(ab) 

= f(a)·f(b) 

= ⌀(Ka)·⌀(Kb) 

⇒ ⌀(Ka·Kb) = ⌀(Ka)·⌀(Kb) 

∴ ⌀ is a homomorphism 

Hence ⌀:G/K→Gˈ is an isomorphism. 

⇒ G/K ≈ Gˈ 
 

 
Theorem: - show that the mapping f:G→G Is defined by f(a)=aˉˈ for a∈G is an 

automorphism iff G is abelian. 

Proof: - Given that f:G→G is a mapping defined by f(a)=aˉˈ for a∈G. 

First Assume f is an automorphism. 

To prove G is abelian 



Let x,y∈G ⇒ f(x) = xˉˈ,f(y) = yˉˈ 

⇒ f(xy) = (xy)ˉˈ 

⇒ f(xy) = yˉˈxˉˈ 

⇒ f(xy) = f(y)f(x) 

⇒ f(xy) = f(yx) 

⇒ xy = yx 

∴ G is abelian 

Conversely suppose G is abelian 

To prove f is an Automorphism 

f is one-one :- 

Let x,y∈G 

f(x) = f(y) 

xˉˈ= yˉˈ 

(xˉˈ)ˉˈ= (yˉˈ)ˉˈ 

x = y 

∴ f is one-one 

f is onto :- 

Let x∈G (co-domain) 

Then xˉˈ∈G (domain) 

Now f(xˉˈ) = (xˉˈ)ˉˈ = x 

∴x∈G ∃ xˉˈ∈G ∋ f(xˉˈ) = x 

⇒ f is onto 



f is homomorphism :- 

Let x,y∈G 

f(xy) = (xy)ˉˈ 

= yˉˈxˉˈ 

= xˉˈyˉˈ 

= f(x)·f(y) 

⇒ f(xy) = f(x)·f(y) 

∴ f is a homomorphism 

Hence f is an Automorphism. 

 
Theorem: - Let a be a fixed element of a group G.Then the mapping fa:G→G is 

defined by fa (x)=aˉˈxa for x∈G is an Automorphism of G. 

Proof :- Let a be a fixed element of G. 

fa:G→G is defined by fa (x) = aˉˈxa for x∈G 

To prove fa is an Automorphism 

fa is one-one :- 

Let x,y∈G 

fa(x) = fa (y) 

⇒ aˉˈxa = aˉˈya 

⇒ x = y 

∴ fa is one-one 

fa is onto :- 

Let y∈G (Co-Domain) 



Since a∈G 

⇒aˉˈ∈G 

⇒ayaˉˈ∈G (Domain) 

Now fa (ayaˉˈ) = aˉˈ(ayaˉˈ)a 

= (aˉˈa)y(aˉˈa) 

= e y e 

= y 

∴y∈G ∃ ayaˉˈ∈G ∋ fa (ayaˉˈ) = y 

⇒ fa is onto 

fa is a homomorphism :- 

Let x,y∈G 

fa(xy) = aˉˈxya 

= aˉˈxeya 

= aˉˈx(aaˉˈ)ya 

= aˉˈxeya 

= aˉˈx(aaˉˈ)ya 

= (aˉˈxa) (aˉˈya) 

= fa(x)·f(a)y 

= fa(xy) = fa(x)·fa(y) 

∴ fa is a homomorphism 

Hence fa is an Automorphism. 



Inner Automorphism :- Let G be a group and ‘a’ be a fixed element in G. Then 

the mapping fa:G→G is defined by 

fa (x)=aˉˈxa for x∈G is known as Inner Automorphism. 

Outer Automorphism :- An Automorphism which is not inner is called outer 

Automorphism. 

NOTE :- The Set of all Automorphism of a group G is denoted by A(G) and is 

defined as A(G)={f/f:G→G is an Automorphism}. 

Theorem:- The set of all Automorphism of a group G form a group with 

respect to composition of mappings. 

Proof :- Let G be a group 

Define A(G)={f/f:G→G is an Automorphism} 

To prove that (A(G),o) is a group. 

Binary operation :- 

Let f,g ∈ A(G) 

Clearly fog is bijective (one-one,onto) 

Now (fog)(ab) = f(g(ab)) 

= f(g(a)·g(b)) 

= f(g(a))·(g(b)) 

= fog(a)·fog(b) 

⇒ fog is a homomorphism 

⇒ fog ∈ A(G) 

∴ f,g ∈ A(G) 

⇒ fog ∈ A(G) 



⇒ ‘o’ is a binary operation on A(G). 

Associative :- 

Let f,g,h ∈A(G),x∈G 

Now ((fog)oh)(x) = (fog)(h(x)) 

= f(g(h(x))) 

= f((goh)(x)) 

= (fo(goh))(x) 

∴ ‘o’ is associative. 

Existence of Identity:- 

Let f ∈bA(G). 

We know that I:G→G is an Automorphism 

⇒ I∈A(G) 

Now (foI)(x) = f(I(x)) 

= f(x) 

⇒ foI = f 

(Iof)(x) = I(f(x)) 

= f(x) 

Iof = f 

∴ I ∈ A(G) is the identity. 

Existance of Inverse :- 

Let f ∈ A(G), I ∈ A(G) 

Clearly fˉ¹:G→G is bijective 



Let a,b∈G 

Now f[fˉ¹(a)·fˉ¹(b)] 

=  (fofˉ¹)(a)·(fofˉ¹)(b) 

= I(a)·I(b) = ab 

⇒ f[fˉˈ(a)·fˉˈ(b)] = ab 

⇒ fˉˈ[f(fˉˈ(a)·fˉˈ(b))] = fˉˈ (ab) 

⇒ fˉˈ(a)·fˉˈ(b) = fˉˈ(ab) 

⇒ fˉˈ is an homomorphism 

⇒ fˉˈ ∈ A(G) 

∴ (A(G),o) is a group. 
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UNIT – 5 

PERMUTATIONS GROUPS 

 
DEFINITION:A Permutation is a one –one mapping of a empty set onto 

itself.Thus a permutation is a bijective mapping of a non-empty set onto itself. 

Example: f: R → R defined by f(x) = x+1 is a permutation of R since f is an 

one-one mapping onto itself . 

Note:If S = { a1 , a2 , ..... an } then a one – one mapping from S onto itself is 

called a permutation of degree n . The number of elements in S is called the 

degree of permutation. 

Equal Permutation: Two permutations f and g defined over a non-empty set S 

are said to be equal if f(a) = g(a) for all a ∈S 

Permutation multiplication (or) Product of permutations: 

It is the composition of mappings defined over the non – empty set S. If g , f are 

two permutations ( bijective mapping ) defined over S, then the product or 

multiplications of f, g is defined as gof (or) gf where 

(gf) (a) = g[f(a)] for all a ∈S.Further gf is also a bijective mapping over S . 

Product of Permutations (or) Multiplication of permutations (or) 

Composition of permutations in Sn : 

 Let f = 𝑎1 𝑎2 … 𝑎𝑛 𝑏1 𝑏2 … 𝑏𝑛 

(𝑏1 𝑏2 … 𝑏𝑛
) , g = (𝑐1 𝑐2 … 𝑐𝑛

) be two elements 

(permutations ) of Sn. Here b1 , b2, ... bn (or)c1 , c2 , ... cn are nothing but the 

elements a1 , a2 , ..... an of Sn is some order. 

Therefore gf = (
𝑎1 𝑎2 … 𝑎𝑛

) 
𝑐1 𝑐2 … 𝑐𝑛 

Permutation Group: The set A(S) of all permutations defined over a 

non-empty set S forms a group under the operation permutation multi[placation. 

The above group is called group of permutations . 
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𝟑 

1 5 

4 

𝟏 

Identity Permutation: If f is a permutation of S such that f(a) = a for all 

a ∈S, then f is identity of S and we denote f as I . 

Order of permutation: If f∈Sn such that fn = I, the identity permutation in 

Sn,where n is the least positive integer, then the order of the permutation f is Sn 

is n. 

Note: Order of Sn is nỊ 

If the number of elements in S is 1, then the order of S is 1Ị = 1 

If the number of elements in S is 2, then the order of S is 2Ị = 2 

If the number of elements in S is 3, then the order of S is 3Ị = 6 and so on 

Problems: 
 

1. If A = (
𝟏 𝟐 𝟑

)and B = 
𝟏 𝟐 𝟑

),then find AB and BA. 

𝟐 𝟑 𝟏 
( 

𝟏 𝟐 
 

Solution: Given that A = (
1 2 3 

and B = 
1 2 3

 

2 3 
) ( ) 

 

AB= ( 

 
BA= ( 

 

) = I 

 
) = I 

1 3 1 2 

 

Therefore AB = BA = I 

2. If f =(
𝟏 𝟐 𝟑 𝟒 𝟓

) , g = (
𝟏 𝟐 𝟑 𝟒 𝟓

), then find fg and gf. 
𝟓 𝟑 𝟐 𝟒 𝟏 𝟒 𝟑 𝟏 𝟐 𝟓 

 

Solution: Given that f =(
1 2 3 4 5

 
, g = (1 2 3 4 5 

 

 fg = 

 
 

1 2 3 4 5 

5 3 2 4 
)
 4 3 1 2 

)
 

( ) 
4 2 5 3 1 

gf = (1 2 3 4 5 

5 1 3 2 
)
 

 

3. If f =(
𝟏 𝟐 𝟑 𝟒 𝟓

) , g = 𝟏 𝟐 𝟑 𝟒 𝟓) , 𝐡 = 

𝟑  𝟏  𝟒  𝟓 𝟐 

(𝟏 𝟐 𝟑 𝟒 𝟓) 
𝟒 𝟑 𝟐 𝟓 𝟏 

Then find (fg)h = f(gh). 

( 
𝟑 𝟒 𝟓 𝟐 

1 2 3 

1 2 3 

1 2 3 

1 2 3 

 



3  

2 

1 

1 

2 

Solution: Given that f =(
1 2 3 4 5

) , g=(
1 2 3 4 5

 and h = 

 
(
1 2 3 4 5 

3 1 4 5 2 1 3 4 5 
) ,

 

4 3 2 5 
)
 

 

fg = 1 2 3 4 5 
( ) 

3 4 5 2 1 
 (fg)h = 

( ) ( ) 
 

(fg)h =(
1 2 3 4 5

) 
2 5 4 1 3 

Next to find f(gh) 

gh = (
1 2 3 4 5 

5 4 3 2 
)
 

f (gh) = 
( ) ( ) 

 

f (gh) = (
1 2 3 4 5

) 
2 5 4 1 3 

Therefore f(gh) = (fg)h 

Multiplication is Associative. 

Inverse of a permutation: It is also a permutation (bijection). 
 

 If f = 𝑎1 𝑎2 … 𝑎𝑛 -1 𝑏1 𝑏2 … 𝑏𝑛 

(𝑏1 𝑏2 … 𝑏𝑛
),then its inverse, denoted by f is (𝑎1 𝑎2 … 𝑎𝑛

) 

 
 
 
 
 
 
 
 

Problems: 

1. Find the inverse of the permutation f = (
𝟏 𝟐 𝟑 𝟒 𝟓 𝟔

) 
𝟑 𝟒 𝟓 𝟔 𝟏 𝟐 

 

Solution: Given that f = (
1 2 3 4 5 6

 

3 4 5 6 1 
)
 

1 2 3 4 5 1 2 3 4 5 
3 4 5 2 1 4 3 2 5 1 

 

1 2 3 4 5 1 2 3 4 5 
3 1 4 5 2 5 4 3 2 1 
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4 

Then f-1 = 3 4 5 6 1 2 
( ) 

1 2 3 4 5 6 

= (
1 2 3 4 5 6 

5 6 1 2 3 
)
 

 
 
 

Example: Consider S = {1 , 2 , 3} and a permutation on S is f = (
𝟏 𝟐

 𝟑
) 

𝟐 𝟏 𝟑 

Here f(1) = 2 

f2(1) = f(f(1)) = f(2) = 1 

The orbits of 1 under f = { f(1) , f(2)} = {2 , 1} 

f(2) = 1 

f2(1) = f(f(2)) = f(1) =2 

The orbits of 2 under f = { f(2) , f2(2)} = { 1, 2} 

f(3) = 3 

The orbits of 3 under f = { f(3)} = {3}. 

 

 
Problem : Find the orbits of σ = (

𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖
) 

𝟐 𝟑 𝟓 𝟏 𝟒 𝟔 𝟖 𝟕 
 

Solution : Given that σ = ( ) 
 

Now σ (1) = 2 

σ² (1) = σ (σ(1)) = σ (2) = 3 

σ³ (1) = σ (σ²(1)) = σ (3) = 5 

σ⁴ (1) = σ (σ³(1)) = σ (5) = 4 

σ⁵(1) = σ (σ⁴(1)) = σ (4) = 1 

The orbits of 1 under σ is {2,3,5,4,1}. 

σ (2) = 3 

1 2 3 4 5 6 7 8 

2 3 5 1 4 6 8 7 
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σ² (2) = σ (σ(2)) = σ (3) = 5 

σ³ (2) = σ (σ²(2)) = σ (5) = 4 

σ⁴ (2) = σ (σ³(2)) = σ (4) = 1 

σ⁵(2) = σ (σ⁴(2)) = σ (1) = 2 

The orbits of 2 under σ is {3,5,4,1,2}. 

σ (3) = 5 

σ² (3) = σ (σ(3)) = σ (5) = 4 

σ³ (3) = σ (σ²(3)) = σ (4) = 1 

σ⁴ (3) = σ (σ³(3)) = σ (1) = 2 

σ⁵(3) = σ (σ⁴(3)) = σ (2) = 3 

The orbits of 3 under σ is {5,4,1,2,3}. 

σ (4) = 1 

σ² (4) = σ (σ(4)) = σ (5) = 2 

σ³ (4) = σ (σ²(4)) = σ (4) = 3 

σ⁴ (4) = σ (σ³(4)) = σ (1) = 5 

σ⁵(4) = σ (σ⁴(4)) = σ (2) = 4 

The orbits of 4 under σ is {1,2,3,5,4}. 

σ (5) = 4 

σ² (5) = σ (σ(5)) = σ (5) = 1 

σ³ (5) = σ (σ²(5)) = σ (4) = 2 

σ⁴ (5) = σ (σ³(5)) = σ (1) = 3 

σ⁵(5) = σ (σ⁴(5)) = σ (2) = 5 

The orbits of 5 under σ is {4,1,2,3,5}. 

σ (6) = 6 
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The orbits of 6 under σ is {6}. 

σ (7) = 8 
 

σ² (7) = σ (σ(7)) = σ (8) = 7 

The orbits of 7 under σ is {8,7}. 
 

σ (8) = 7 

σ² (8) = σ (σ(8)) = σ (7) = 8 

The orbits of 8 under σ is {7,8}. 

Problem : Find the order of the permutation σ = (
𝟏 𝟐 𝟑 𝟒 𝟓 𝟔

) 
𝟐 𝟑 𝟓 𝟏 𝟒 𝟔 

 

Solution : Given that σ = 1 2 3 4 5 6 
( ) 

 
σ² = σ. σ = (

1
 

2 

2 3 5 1 4 6 
 

) 
 

= 
1 2 3 4 5 6 

( ) 
3 5 4 2 1 6 

 

σ3 = σ2. σ = (
1 2 3 4 5 6

 1 2 3 4 5 6 

3 5 4 2 1 
) ( ) 

6 2 3 5 1 4 6 
 

= 
1 2 3 4 5 6 

( ) 

 
σ4 = σ3. σ =(

1
 

5 

5 4 1 3 2 6 
 

) 

 
= ( ) 

 
σ5= σ4. σ= (

1 2 3 4 5 6
 1 2 3 4 5 6 

4 1 2 5 3 
 = 

) ( ) 
6 2 3 5 1 4 6 

( ) 
 

The order of the permutation σ is 5. 

Cyclic permutation :Consider a set S = { a1 ,a2 , ..... an} and a permutation 
 

f = (
𝑎1

 

𝑎2 

𝑎𝑘+1 … 𝑎𝑛) on S
 

𝑎𝑘+1 … 𝑎𝑛 

2 3 4 5 6 1 ) ( 2 3 4 5 6 
3 5 1 4 6 2 3 5 1 4 6 

 

2 3 4 5 6 1 ) ( 2 3 4 5 6 
4 1 3 2 6 2 3 5 1 4 6 

 
1 2 3 4 5 6 
4 1 2 5 3 6 

 

1 2 3 4 5 6 
1 2 3 4 5 6 

 

𝑎2 𝑎

3 

… 𝑎𝑎 

𝑎3 𝑎

4 

… 𝑎 
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i.e., f(a1) = a2 , f(a2) = a3 , f(a3) = a4 ...f(ak) = a1 , f(ak+1) = ak+1...f(an) = an 

This type of permutation f is called a cyclic permutation of length k and 

degree n. It is represented by (a1 ,a2 ,....ak) (or) (a1 ,a2 ,....ak) which is a cycle of 

length k (or) k-cycle. The number of elements permuted by a cycle is called it’s 

length. 

 

 
Example : If S = {1 , 2 , 3 , 4 , 5 , 6} then a permutation f on S is 

(
𝟏 𝟐 𝟑 𝟒 𝟓

)
 

𝟑 𝟏 𝟒 𝟔 𝟓 

Solution: It can be written as (1 3 4 6 2) 

f is a cycle of length 5 

f can also be written as (3 4 6 2 1 ) (or) (4 6 2 1 3 ) etc 

Example: Find the order of the cycle (1 4 5 7 ) 

Solution : Let f = (1 4 5 7 ) 

 f = 
( ) 

 
f2 = f . f = (

1 2 3 4 5 6 7
) (

1 2 3 4 5 6 7
)
 

4 2 3 5 7 6 1 4 2 3 5 7 6 1 
 

= ( ) 
 

f3 = f2 . f = (
1 2 3 4 5 6 7 1 2 3 4 5 6 7 

5 2 3 7 1 6 
 = 

) ( ) 
4 4 2 3 5 7 6 1 

( ) 

 
f4= f3 . f = ( ) ( ) 

 
= ( ) 

 

f4= I 

The order of the cycle is 4. 

1 2 3 4 5 6 7 
4 2 3 5 7 6 1 

 

1 2 3 4 5 6 7 
5 2 3 7 1 6 4 

 

1 2 3 4 5 6 7 
7 2 3 1 4 6 5 

 
1 2 3 4 5 6 7 1 2 3 4 5 6 7 
7 2 3 1 4 6 5 4 2 3 5 7 6 1 

 
1 2 3 4 5 6 7 
1 2 3 4 5 6 7 
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2 

 

Transposition: A cycle of length 2 is called is called a transposition. 
 

Example :If S = {1 2 3 4 5 } and a permutation f on S is 1 2 3 4 5 
( ) 

then f = (2 , 3 ) is a cycle of length 2 and degree 5. 
1 3 2 4 5 

 

Disjoint cycle: Let S = { a1 ,a2 , .... an} . If f , g be two cycles on S such that they 

have no common elements then these are called disjoint cycles. 

Example: Let S = {1 2 3 4 5 6 7} 

 If f = (1 3 7) and g = (2 4 5) then f , g are disjoint cycles . 

 If f = (1 3 7) and g = (2 3 4 5) then f , g are not disjoint cycles . 

Inverse of a cyclic permutation: 

Example : If f = (2 3 4 1) of degree 5 then find f -' 

Solution : Given that f = (2 3 4 1) 

f -' = ( 1 4 3 2) 

Since f = (
1 2

 
2 3 

f -' = (
1

 

4 
) 

 

Problem : If f = {1 2 3 4 5 8 7 6} , g = {4 1 5 6 7 3 2 8} are 

cyclic permutations then show that (fg) -' = g -' f -' . 

Solution : Given that f = {1 2 3 4 5 8 7 6} 

f = (1 2 3 4 5 6 7 8) 
2 3 4 5 8 1 6 7 

f -' = (1 2 3 4 5 6 7 8) 
6 1 2 3 4 7 8 5 

g = (1 2 3 4 5 6 7 8) 
5 8 2 1 6 7 3 4 

g -' = (
1 2 3 4 5 6 7 8 

4 3 7 8 1 5 6 
)
 

3 4 5 )  

4 1 5 

2 3 4 5 

1 2 3 5 
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3 1

 
) ( 

5 

( 

5 

2

 

3 
)
 

fg = (
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

2 3 4 5 8 1 6 
) ( ) 

7 5 8 2 1 6 7 3 4 
 

= (
1 2 3 4 5 6 7 8 

8 7 3 2 1 6 4 
)
 

 

( fg) -' = 
1

 
5 

 

g -' f -' = (
1

 
4 3 7 8 1 5 6 2 

 = 

6 1 2 3 4 7 8 
)
 

( ) 
 

Therefore (fg) -' = g -' f -' . 

 

 
Order of a cyclic permutation: 

Example : If f = (
1 2 3

) is a permutation group f3. 
2 3 1 

Solution : The cyclic permutation of f is (1 2 3) 
 

f2 = f .f = (
1 2 3 

( 
1 

1 2 3 
2 3 1 

) = ( 
1 2 3 

3 1 2
)
 

 

f3 = f2 .f =(
1 2 3

 
2 

1 2 3 
2 3 1 

) = ( 
1 2 3 

) 
2 3 

f3 = I 

Therefore f is a cyclic permutation of length 3 and degree 3. Also the 

order of f is 3. 

 

Problem: write down the following products are disjoint cycles. 

i. (1 3 2)(5 6 7 )(2 6 1)( 4 5) 

ii. (1 3 6 )( 1 3 5 7 )( 6 7)( 1 2 3 4) 

Solution : (i) (1 3 2)(5 6 7 ) 

 = 
( ) ( ) 

1 

2 3 4 5 6 7 8 )  

4 3 7 8 6 2 1        

2 3 4 5 6 7 8
) (

1 2 3 4 5 6 7 8 

 

1 2 3 4 5 6 7 8 
5 4 3 7 8 6 2 1 

 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 
3 1 2 4 5 6 7 1 2 3 4 6 7 5 
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7 

= (
1 2 3 4 5 6 7

)
 

3 1 2 4 6 7 5 

(2 6 1)( 4 5) 

= (1 2 3 4 5 6 7) (1 2 3 4 5 6 7) 
2 6 3 4 5 1 7 1 2 3 5 4 6 7 

 
 

= (1 2 3 4 5 6 7 

2 6 3 5 4 1 
)
 

 

Now (1 2 3 4 5 6 7) (1 2 3 4 5 6 7) 
3 1 2 4 6 7 5 2 6 3 5 4 1 7 

 
 

 

= ( ) = (2 7 5 4 6 3) (1) 
 

(ii) (1 3 6 )( 1 3 5 7 ) 
 

(1 2 3 4 5 6 7) (1 2 3 4 5 6 7) 
3 2 6 4 5 1 7 3 2 5 4 7 6 1 

= 
1 2 3 4 5 6 7 

( ) 
6 2 5 4 7 1 3 

( 6 7)( 1 2 3 4) 
 

(1 2 3 4 5 6 7) (1 2 3 4 5 6 7) 
1 2 3 4 5 7 6 2 3 4 1 5 6 7 

 = 
( ) 

 

Now (1 2 3 4 5 6 7) (1 2 3 4 5 6 7) 
6 2 5 4 7 1 3 2 3 4 1 5 7 6 

= (1 2 3 4 5 6 7 
) = (1 2 5 7)(3 4 6) 

2 5 4 6 7 3 1 

Problem: Express the product (2 5 4)(1 4 3)(2 1) are the product of 

disjoint cycles and find its inverse. 

Solution : Given that (2 5 4)(1 4 3)(2 1) 
 

(1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1 5 3 2 
) (      ) (      ) 

4 4 2 1 3 5  2 1 3 4 5 

1 2 3 4 5 6 7 

1 7 2 6 4 3 5 

 

1 2 3 4 5 6 7 
2 3 4 1 5 7 6 
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(
1 2 3

 4 5 

1 

) = (1 5 4 3)(2) 
5 2 1 3 4 

Let f = (1 5 4 3)(2) 

f -' = (3 4 5 1) (2) = (
1 2 3 4 5 

. 

3 2 4 5 
)
 

 
 
 

Note : 

• The multiplication of disjoint cycles is commutative. 

•  Every permutation can be expressed as a product of disjoint cycles which 

is unique(a part from the order of the factors). 

• Every cycle can be expressed as a product of transpositions. 

•  Every permutation can be expressed as a product of transpositions in 

many ways. 

 

 

 
 

Even and Odd Permutations: A permutation is said to be an even (odd) 

permutation if it can be expressed as a product of even (odd) number of 

transpositions . 

Note : 

• Identity Permutation I is always an even permutation. 

•  A cycle of length n can be expressed as a product of n-1 transposition. If 

n is odd then the cycle can expressed as the product of odd number of 

transposition .If n is even then the cycle can expressed as the product of 

odd number of transposition. 

• The product of two odd permutations is an even permutation. 

• The product of two even permutations is an even permutation. 

•  The product of an odd permutations and an even permutation is an odd 

permutation. 
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• The inverse of an odd permutation is an odd permutation. 

• The inverse of an even permutation is an even permutation. 

Problem: 

Examine whether the following permutations are even (or) odd. 
 

(i) (
𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕

) (ii) 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖) 

𝟑 𝟐 𝟒 𝟓 𝟔 𝟕 𝟏 
(
 

(iii) (1 2 3 4 5) (1 2 3) (4 5) (iv)( 
 

Solution: (i)(
𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕

) 
𝟑 𝟐 𝟒 𝟓 𝟔 𝟕 𝟏 

= ( 1 3 4 5 6 7) (2) 

𝟑 𝟏 𝟖 𝟓 𝟔 𝟐 𝟒 

𝟖 𝟗 
)

 
𝟖 𝟗 

 

= (1 3 ) (1 4 )( 1 5 )(1 6 )(1 7 )( 2 ) 

Therefore the number of transpositions are odd 

Given Permutation is odd. 

(ii) (𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖) 
𝟕 𝟑 𝟏 𝟖 𝟓 𝟔 𝟐 𝟒 

= (1 7 2 3 ) (4 8) (5) (6) 

= (1 7 ) (1 2) (1 3) (4 8) (5) (6) 

Therefore the number of transpositions are even. 

Given Permutation is even. 

(iii) (1 2 3 4 5) (1 2 3) (4 5) 

(1 2 ) (1 3) (1 4) (1 5) (2 3) (4 5) 

Therefore the number of transpositions are even. 

Given Permutation is even. 

(iv) (𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 ) 
𝟔 𝟏 𝟒 𝟑 𝟐 𝟓 𝟕 𝟖 𝟗 

= (1 6 5 2) (3 4) (7) (8) (9) 

𝟕 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 

 



13  

= ( 1 6) (1 5) (1 2) (3 4) 

Therefore the number of transpositions are even. 

Given Permutation is even. 

 

 

 

 
Theorem: Let Sn be the permutation group on n symbols.Then of the n! 

Permutations (elements) in ½ n! are even permutations and ½ n! are 

odd permutations. 

Solution : Let Sn = {e1, e2 , ....ep ,o1, o2 , ... oq} be the permutation group on n 

symbols where e1, e2 , .... ep are even permutations and 

o1, o2 ,....oqare odd permutations (∵any permutation can be either even (or) 

odd but not both). 

∴ p+q = n! 

Let t∈Sn and t be a transposition. 

Then te1, te2 , ....tep ,to1, to2 ,....toq are elements of Sn as permutation 

multiplication is a binary operation in Sn 

Since t is an odd permutation te1, te2 , .... tep are all odd and to , 

tO1, tO2 ,....tOq are all even permutations. 

Let tei = tej for i ≤ p , j ≤ p 

⟹ ei =ej 

which is absurd. 

Therefore tei ≠ tej and hence the p permutations are all distinct in Sn . 

But Sn contains exactly q odd permutations p ≤ q. 

Similarly we can show that q even permutations 

tO1, tO2 ,....tOq are all distinct even permutations in Sn. 

q ≤ p 
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p = q = ½ n! 

So has ½ n! even permutations and ½ n! odd permutations. 

Alternating set of permutations of degree n: 

Let Sn be the permutation group on n symbols. The set of all ½ n! even 

permutations of Sn , denoted by An is called the alternating set of 

permutations of degree n. 

Theorem: The set An of all even permutations of degree n forms a group 

of order ½ n! With respect to permutation multiplication. 

Proof: Let set An of all even permutations of degree n 

• Closure : Let f,g ∈An 

i.e., f,g are even permutations on n symbols. 

⟹ fg is also an even permutation on n symbols. 

⟹ fg ∈An 

• Associativity: Since a permutation is a bijection, multiplication of 

permutations ( composition of mappings) is associative. 

• Existence of identity: Let I be the identity Permutation on n symbols, 

then I ∈An , since I is an even permutation. 

Then I is an even permutation 

⟹ I ∈An 

Also for any f ∈An , fI = If = f 

I is an identity element in An . 

• Existence of inverse: Let f ∈An 

⟹ f is an even permutation. 

⟹ f-1 is also an even permutation 

⟹ f-1∈An 

Also ff-1 = f-1f = I 
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Every element of An is invertible and the inverse of f is f-1 

An is a group of order ½ n! since the number of permutation on n symbols is 

½ n! 

Thus The set An of all even permutations of degree n forms a group of order 

½ n! With respect to permutation multiplication. 

Theorem: The set An of all even permutations on n symbols is a 

normal subgroup of the permutation group Sn on the n symbols. 

Proof: Let An be the set of all even permutations on n symbols . 

We know that Sn is a group on n symbols with respect to Permutation 

multiplication and An (⊂Sn) is the set of even permutations. 

Also An is a group with respect to Permutation multiplication. 

Let f ∈Sn and g ∈An 

g is an even permutation and f is even (or) odd permutation. 

If f is an odd permutation then f-1 is also an odd permutation. 

Also fg is an odd permutation. 

fgf-1 is an even permutation and hence fgf-1∈An 

If f is an even permutation then f-1 is also an even permutation. 

Also fg is an even permutation. 

fgf-1 is an even permutation and hence fgf-1∈An . 

Thus f ∈Sn and g ∈An ⟹ fgf-1∈An . 

An is a normal subgroup of Sn 

i.e., The set An of all even permutations on n symbols is a normal subgroup 

of the permutation group Sn on the n symbols. 

Cayley’s theorem : 

Theorem: Every finite group G is isomorphic to a Permutation group. 

Proof: Let (G, · ) be a finite group. 
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Now consider fa : G → G defined by fa(x) = ax for all x∈G. 

Now to prove that fa is a Permutation. 

fa is well- defined: Let x, y ∈G. 

Suppose x = y 

⟹ ax = ay 

⟹ fa(x) = fa(y) 

fa is well-defined. 

fa is one- one : Let x, y ∈G. 

Suppose fa(x) = fa(y) 

⟹ ax = ay 

⟹ x = y 

Therefore fa is one- one. 

fa is onto : Let x ∈G. 

Since a∈G ⟹ a-1∈G 

a-1∈G , x∈G ⟹ a-1x∈G 

Now fa (a
-1x) = a(a-1x) = aa-1(x) = ex = x 

For x ∈G there exists a-1x∈G such that fa (a
-1x) = x 

Therefore fa is onto . 

Therefore fa is a Permutation on G. 

Let Gˈ= { fa/a∈G} be the set of all permutations on G corresponding to every 

element of G. 

Now to prove that Gˈis a group with respect to Permutation multiplication. 

Since e∈G , fe ∈Gˈ 

Gˈ≠∅ 

Closure: Let fa , fb ∈Gˈ 
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For every (fa fb )(x) = fa(fb (x)) 

= fa (bx) 

= a(bx) 

= abx 

=fab(x) 

⟹ (fa fb )(x) = fab(x) for all x∈G. 

fa fb = fab ∈Gˈ 

Associativity : Let fa ,fb ,fc ∈Gˈ for a, b, c ∈G 

fa (fb fc ) = fa (fb fc ) 

= f(ab)c 

= fabfc 

= (fa fb )fc 

fa (fb fc ) = (fa fb )fc 

Existence of identity:Let e be the identity in G. 

Let e ∈G , fe∈Gˈ 

Let fa ∈Gˈ 

fafe = fae = fa and 

fefa = fea = fa 

Identity in G exists and it is fe . 

Existence of inverse:Let fa ∈Gˈ 

Since a∈G⟹ a-1∈G 

fa
-1∈Gˈ 

fafa
-1 = f aa-1 = fe 

fa
-1fa= f a-1a = fe 
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Every element in Gˈ is invertible and (fa) 
-1 = f a-1 

Therefore Gˈ is a group. 

Consider ∅ : G → Gˈ defined by ∅(a) = fa for a∈G 

∅ is well- defined : Let a,b∈G 

Suppose a = b 
 

⟹ ax = bx 

⟹fa (x) = fb (x) 

⟹ fa = fb 

⟹∅(a) = ∅(b) 

Therefore∅ is well-defined. 

∅ is one- one : Let a,b∈G. 

∅(a) = ∅(b) 

⟹ fa = fb 

⟹ fa (x) = fb (x) 

⟹ ax = bx 

⟹ a = b 

Therefore∅ is one -one. 

∅ is onto :Let fa ∈Gˈ 

⟹ a∈G and ∅(a) = fa 

For each fa ∈Gˈ there exists a∈G such that ∅(a) = fa 

Therefore ∅ is onto 

∅ is a Homomorphism : Let a,b ∈G 

∅(ab) = fab 

= fafb 
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ω 2) 

= ∅(a)∅(b) 

Therefore ∅ is a Homomorphism. 

The finite group G is isomorphic to the permutation group. 

Thus the every finite group G is isomorphic to the permutation group. 

Note : The group Gˈ in the Cayley’s Theorem is called a regular 

permutation group. 

 

 

 
 

• Problem : Find the regular permutation group isomorphic to the 

multiplicative group { 1, ω , ω²} 

Solution: We use Cayley’s Theorem 

If G is a group then the regular permutation group isomorphic to the 

group G is { fa/a∈G} where fa : G → G defined by fa(x) = ax for all x∈G. 

Let G = { 1, ω , ω²} be the multiplicative group then the regular 

permutation group isomorphic to the multiplicative group G is 

{ f1 , fωfω² } 
 

 

 

f  = ( 1 ω ω2 
1.1 1. ω 1. ω 

= (1 ω ω2
) 

1 ω ω2 

f ω = (1 ω ω2 
) 

ω ω2 1 
 
 
 

f ω2 = ( 1 ω ω2 
) 

ω2 1 ω 
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• Problem : Find the regular permutation group isomorphic to the 

multiplicative group { 1,-1 ,i ,-i} 

Solution: We use Cayley’s Theorem 

If G is a group then the regular permutation group isomorphic to the 

group G is { fa/a∈G} where fa : G → G defined by fa(x) = ax for all x∈G. 

Let G ={ 1,-1 ,i ,-i} be the multiplicative group then the regular 

permutation group isomorphic to the multiplicative group G is 

{ f1 , f-1 ,fi ,f-i } 
 

 

 

f 1 = (
1 −1 𝑖 −𝑖 

1 −1 𝑖 −𝑖 
 
 
 

f -1 = ( 
1 −1 𝑖 −𝑖 

−1 1 −𝑖 𝑖 
 
 

 

f i = (
1 −1 𝑖 −𝑖 

1 −𝑖 1 𝑖 
 
 
 

f -i= ( 
1

 
−𝑖 

) 
 
 
 
 

Cyclic Groups 
 

 

 

Note : Let G be a group and ‘a’ be an element of G. Then H = {an/n∈Z} is a 

subgroup of G. Further H is the smallest subgroup of G Which contained the 

element ‘a’. 

) 

) 

) 

−1 𝑎 −𝑎 
−𝑎 1 −1 
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Cyclic subgroup generated by ‘a’ : Suppose G is a group and ‘a‘ is an 

element of G. Then the subgroup H = {an/n∈Z} is called a cyclic subgroup 

generated by ‘a’. ‘a’ is called generator of H . This will be written as H = ‹a› 

(or) (a) (or) {a}. 

Note : Let G be a cyclic groupgenerated by ‘a’ if O(a) = n , then an = e and { 

a¹,a², ... an-1 ,an= e} is preciously the set of distinct elements belonging to G , 

where 'e' is the identity in the group (G, · ). 

Cyclic subgroup : Suppose G is a group and there is an element of a∈G such 

that G = {an/n∈Z} then G is called a cyclic group and ‘a’ is called generator of 

G .We denote G by ‹a› (or) (a) (or) {a}. 

Theorem: If G is a finite group and a∈G , then O(a)/O(G). 

Proof : G is a finite group. 

Let O(G) = m 

Let H be the cyclic subgroup of G generated by’a’ O(a) = n 

Therefore O(H) = n 

But by Lagranges theorem O(H)/O(G) ⟹ n/m 

⟹ i.e., O(a)/O(G) 

 

 
Note : If G is a finite group of order n and if a∈G. Then an = e 

(identity in G) 

Problem : Prove that (Z,+) is a cyclic group. 

Solution : Given that (Z,+) is a group and 1∈Z 

10 = 0.1= 0 

11 = 1.1= 1 , 12 = 2.1=2 .... etc 

1-1 = -1.1= -1, 1-2 = -2.1= -2. .. etc 

1 is generator of the cyclic group (Z,+) i.e., Z =‹1› 

Similarly we can prove that Z =‹-1› 
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Problem: Show that G = { 1 ,-1 , i , -i} the set of all fourth roots of unity 

is a cyclic group with respect to multiplication. 

Solution : Given that G = { 1 ,-1 , i , -i} 

Clearly (G, · ) be a group. 

(i)¹ = i , (i)² = -1 , (i)³ = i².i = -1.i = -i , 

(i)⁴ = i².i² = -1.-1. = 1 

Thus all the elements of G are the power of i∈G 

G is a cyclic group generated by i , G = ‹i› 

Similarly we can have G = ‹-i› 

Problem : Show that the set of all cube roots of unity is a cyclic group 

with respect to multiplication. 

Proof : The set of all cube roots of unity G = { 1, ω , ω²} 

(ω)¹ = ω , (ω)² = ω² , (ω)³= 1 

Then the elements of G are the power of the single element ω∈G. 

G is a cyclic group generated by ‘ω’. i.e., G = ‹ω› 

We can also have G = ‹ω²› 

Problem : Show that the set nth roots of unity with respect to 

multiplication is a cyclic group. 

Proof : We know that G = {ω⁰ =1 , ω¹ , ω² , .... , ωn-1} 

ωk = e2kπ/n , k = 0,1,2, ... (n-1) is a group under multiplication. 

(ω)⁰ = 1 = e , (ω)¹ = ω , (ω)² = ω.ω = ω² , 

(ω)³= ω².ω = ω³ ...... (ωn-1) = ωn-1 

Thus, every element of G is some power of ω . 

G is a cyclic group generated by ‘ω’. i.e., G = ‹ω› . 

Theorem : Every cyclic group is an abelian group. 
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Proof : Let G be a cyclic group generated by’a’then 

G =  {an/n∈Z} 

Let ar , as ∈G, r,s ∈Z 

ar .as = ar+s = as+r = as .ar 

Therefore G is abelian. 

Theorem : If ‘a’ is a generator of a cyclic group G then a-1 is also a 

generator of G. 
 

(OR) 

If G = ‹a› , then G = ‹a-1› 
 

Proof: Let G = ‹a› be a cyclic group. 

If G = {an/n∈Z} 

Let ar∈G , r∈Z 

( ar ) = ( a-1 )-r , -r∈Z 

Thusa-1 is the generator of G . i.e., G = ‹a-1› . 

 

 
Theorem : Every subgroup of cyclic group is cyclic. 

Proof : Let G = ‹a› is a cyclic group then G = {an/n∈Z}. 

Let H be a subgroup of G. 

Then every element of H is an element of G. 

Thus every element of H is of the form an, n∈Z 

Let ‘d’ be the smallest positive integer such that an∈H. 

To prove that H = ‹ad›. 

Let am∈H, where m∈Z. 

By division algorithm, ∃ q,r ∈Z ∋ m = dq+r where r = 0 (or) 0 < r < d. 

Therefore am = adq+r = adq .ar = (ad)q.ar →(1) 
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But ad∈H⟹ (ad)q ∈H⟹ adq ∈H⟹ a-dq ∈H 

Now am , a-dq ∈H⟹ am-dq ∈H 

⟹ ar ∈H 

But 0 < r < d and ar ∈His a contradiction to our assumption.From (1) , therefore 

r = 0. 

am = (ad)q 

Therefore H is a cyclic group generated by ad. 

i.e., H = ‹ad›. 

Theorem : The quotient of a cyclic group is cyclic. 

Proof : Let G = ‹a› be a cyclic group with ‘a’ as generator. 

Let N be a subgroup of G. 

Since G is abelian. 

Therefore N is normal in G. 

We know that G/N = {Nx/x∈G }. 

Now , a∈G , Na ∈ G/N ⟹ ‹Na› ⊆ G/N →(1) 

Also, Nx∈G ⟹ x∈G = ‹a› 

Therefore x = an for some n∈Z. 

Nx = Nan = N ( a ,a , ... a(n times)) 

= (Na)(Na) .... (Na)(n times) 

= (Na)n 

Therefore Nx ∈ G/N ⟹ Nx ∈ ‹Na› 

Therefore G/N ⊆ ‹Na› →(2) 

From (1) & (2) G/N = ‹Na› 

i.e., quotient group of a cyclic group is cyclic. 
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Theorem : If P is a prime number then every group of order p is 

cyclic group i.e., a group of prime order is cyclic. 

Proof : Let P ≥2 be a prime number. 

Let G be a group of order p. 

Claim : G is a cyclic group. 

O(G) = p then there exists at least one element a other than element e in G. 

‹a› is cyclic subgroup of G. 

a ≠ e , a ∈‹a› 

‹a› ≠ ‹e› 

O(‹a›) = h 

By Lagranges theorem, O(‹a›)/O(G) i.e., h/p 

h = 1 (or) h = p 

‹a› ≠ ‹e›. 

Therefore h = p 

O(‹a›) = O(G) 

G = ‹a› 

G is a cyclic group. 

Theorem : The order of a cyclic group is equal to the order of its generator. 

Proof : Let G be a cyclic group generated by’a’. i.e., G = ‹a› 

(i) Let O(a) = n, n is finite number then e = a⁰ , a¹, a²,...an-1∈G 

Now we prove that this elemens are distinct and this are the only elements of G 

such that O(G) = n . 

Let i,j (≤(n-1)) be two non-negative integer such that ai=aj for i ≠ j. 

Now either i > j (or) i < j 

Suppose i > j 
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Then ai a-j = aj a-j 

ai-j = aj-j 

ai-j = a⁰ = e and 0 < (i-j) < n 

But this contradiction the fact that O(a) = n 

Therefore ai ≠ aj 

Therefore a⁰, a¹, a² , ....are all distinct. 

Consider any ap ∈G , where p is any integer. 

By Euclid’s algorithm , ∃ q,r ∈Z ∋ p = nq+r where 0 ≤r ≤n . 

Then ap = anq+r = anq .ar = (an)q.ar = aq.ar = e. ar = ar 

But ar is on of a⁰ , a¹, a²,...an-1 

Hence each ap ∈G is equal to one of the elements a⁰ , a¹, a²,...an-1 i.e., 

O(G) = n = O(a). 

(ii) Let O(a) be infinite. 

Let m ,n be two positive integers such that am = an for m ≠n. 

Suppose m > n 

Then am a-n = an a-n 

am-n = an-n 

 

am-n = a⁰ = e 

⟹O(a) is finite 

It is a contradiction to the fact that O(a) is infinite. 

Therefore am ≠ an for m ≠n. 

Hence , G is of infinite order . 

Thus from (1) & (2) , 
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The order of a cyclic group is equal to the order of its generator. 

 
Note : A cyclic group of order n has ∅(n) generators. 

Problem : Show that the group G = ({ 1,2,3,4,5,6}×7) is cyclic also 

write down all its generators. 

Solution : Clearly O(G) = 6 

If there exists an element a∈G such that O(a) = 6 

Then G is cyclic group with generator ‘a’ 

3¹ = 3 , 3² = 3×73 = 2 , 3³ = 3²×73 = 6 , 3⁴ = 3³×73 = 4 , 

3⁵ = 3⁴×73 = 5 , 3⁶ = 3⁵×73 = 1 ,the identity element 

Therefore G is a cyclic group with generator 3. 

Since 5 is relatively prime to 6, 3⁵ is a generator of G. 

i.e., ‘5’ is a generator of G. 

Note : If n = P1α1 ,P2α2 ,...Pk. αk where P1, P2, .... Pk are all prime factors of n 

then ∅(n) = n(1- 1/P1) (1- 1/P2) ... (1- 1/Pk) 

Problem : Find the number of cyclic groups of orders 5 , 6 , 8 , 12 , 15 , 60. 

Solution : O(G) = 5 the number of generators of 

G = ∅(5) = 5(1- 1/5) = 5(4/5) = 4. 

O(G) = 6, the number of generators of 

G = ∅(6) = 6(1- 1/2) 1- 1/3) = 6(1/2) (2/3) = 2. 

O(G) = 8, the number of generators of 

G = ∅(8) = 8(1- 1/2) = 4 

O(G) = 12, the number of generators of 

G = ∅(12) = 12(1- 1/2) (1- 1/3) = 12(1/2)(2/3) = 12(1/6) = 4 
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O(G) = 15, (3 ,5 are the only prime factors of 15) 

the number of generators of 

G = ∅(15) = 15(1- 1/3) (1- 1/5) = 15 (2/3)(4/5) = 8 

O(G) = 60, (2, 3 ,5 are the only prime factors of 60) 

the number of generators of 

G = ∅(60) 

= 60(1- 1/2)(1- 1/3) (1- 1/5) 

= 60 (1/2) (2/3)(4/5) 

= 16. 
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