D.N.R.COLLEGE, (AUTONOMOUS): BHIMAVARAM DEPARTMENT OF MANAGEMENT STUDIES

Quantitative Techniques in Management I SEMESTER

Presented By R.SUBBA RAYUDU

Dept of Management Studies D.N.R.CollegeBhimavaram- 534202

Phone: 08816-224119

E mail: mbadnr123@gmail.com
Website: https://dnrcollege.org/en/

ONE- Way clasification - ANOVA

129) Three samples each Size of 5 were drawnfrom uncorrelated normal populations Test the hypothesis that the population means are equal to 6 percent level

Sample 1: 10 12 9 16 13 Sample 2: 9 7 12 11 11
Sample 3: 14 11 15 14 16

Ho: Population means are equal

Sample 1	x1 2	Sample	χ_{1}^{2}	San	nple x3
10	100	9	81	14	196
12	144	7	49	11	121
9	81	12	144	15	225
16	256	11	121	14	196
13	169	11	121	16	256
Zx = 60	ZX1=750	2×2 2	= 516	EX3 =70	2×3

$$XX$$

$$T = X_1 + X_2 + X_3$$

$$= 60 + 50 + 70$$

180

Correction factor =
$$7^2/n$$

$$= \frac{(180)^2}{15}$$

$$= \frac{32400}{15}$$

$$= 2160$$

Total sum of squares (SST) =

$$\Sigma x_1^2 + \Sigma x_2^2 + \Sigma x_3^2 = \frac{\tau^2}{5}$$

$$= 750 + 516 + 994 - 2160$$

Sum of squares between samples SSB = $(\Sigma \times)$ + $(\Sigma \times)$ + $(\Sigma \times)$ - Σ

$$= \frac{(60)^{2}}{5} + \frac{(50)^{2}}{5} + \frac{(70)^{2}}{5} - 2160$$

$$= \frac{3600}{5} + \frac{2500}{5} + \frac{4900}{5} - 2160$$

$$= 720 + 500 + 980 - 2160$$

$$= 2200 - 2160$$

$$= 40 + 300$$

ANOVA Table

Source of	Sumof	différence	1	F ratio
variation Between	squares (ss)	freedom 5-3=2	40/2=20	
Within	60	15-3=12	60/12=5	20=4

Table for 19,=2 & 192=12 at 0.05 = 3.89

Conclusion:
1-to is rejected which means the population
nears of the three samples do not have the same

Ino-may classification - ANOVA:

2) A large scale manufacturing

company has appointed mangers with different educational qualification in its newly opened branches in three regions. Is there significant difference between & within the managers in terms of scale (Ps. '000)

Qualification	Reg	ions	ine	Total	
Quici	A.	13	C		-
MBA	10	12	11	33	
CA	8	7	1909	24	
B. Pech	6	8	9	23	
Total	24	27	29	80	

1 4 8 6 6

D. Webig

ourseles History

not an arm they

little draw de

SHA

Ho: Sales performance is equal between and within managers

Let denote A,B&C regions as X1,

X2 & X3 respectively

Managers Regions	1
x, x, 2 x, x, x3 x3	70+
MBA 10 100 12 144 11 121	33
CA 8 864 7 49 9 81	2.4
B. Tech 6 36 8 64 9 81	23
24 220 27 257 29 283	8

The correction factor

The correction factor

$$7 / n = \frac{(80)^2}{9} = \frac{6400}{9} = 711.11$$

The total sum of squares

 $557 = x_1^2 + x_2^2 + x_3^2 - \frac{x_2^2}{5}$
 $= 220 + 257 + 283 - 711.11$
 $= 48.89$

The sum of squares
between managers

$$8513 = \frac{(33)^{3} + (24)^{3} + (23)^{3} - 711.11}{3}$$

$$= 363 + 192 + 176.33 - 711.11$$

The sum of squares
with in managers $= \frac{(24)^{7}}{3} + \frac{(27)^{2}}{3} + \frac{(29)^{2}}{3} - 711.11$ = 192 + 243 + 280.33 - 711.11 = 4.22

The sum of squares of residential (SSB + 3SW) = SS9 - (SSB + 3SW) = 48.89 - (20.22+4.22)

ANOVA Table

Variation	SI	DF	MS	10.7
Between monagers	SS 20.22	125	MS 10.11	10.11/6.11=1.65
Within managers	204.2	2/2	2.11	2:11/6:11 = 0.34
Residual	24	.45 4	6.11	2.11
A Mark		1		

For F(0.05) [for 10,=2, 10,=4) = 6.94

Since the calculated value of F is ratio is less than the table value, difference is insignificant. Hence, Ho is accepted.

Test of goodness of fit - Chisquare Test:

We can test if a worker is equally prone to producing defective components throughout an eight-hour shift (or) not be break the shift into four 2-hour solls & count the

number of defective components
produced in each of this slot. At the
end of one-week found that the worker
has produced so defective components with
the following breakup

	1 .0
Time slot Chours)	Observed frequency
8.00 - 10.00	101 8
10.00 - 12.00	11
12-00-14-30	16
14:30 - 16.30	- 15 We was
	1 50 leaves

Is it reasonable to assume that the probability to produce a defective component equal in each of the four 2- hourslots?

Sol:

Let denote probability of defective component came from the ith slot by pi

Ho: P1: P2: P3: P4 = 0.25 H1: All of P1, P2, P3 & P4 are not equal Calculate the expected frequency loased on the assumption that the null hypothesis is true. It means the average expected frequency per slot become 12.5 (50/4)

Ti caland	I a File		- Aller
Timeslot	Observed	Espected	1(0-E)/E
Hara	frequency	frequenc	y vole
And the second s	(0)	19404	(8-12.50)/8
8.00-10.00	8 10 0	12.50	$= 1.62$ $(11-12.50)^{7}/11$
10.00 - 12.00	11	12.50	1 A. 18
12.00 -14.30	16 me 1	12.50	(16-12.50) /16
14.30-16.30	15 We	12.50	$(15-12.50)^{2}/15$
errelicanismos e e encommente insulante anno encommente de encommente de encommente de encommente de encomment	50 68	50.00	3.28
4	13	-02 ^V	

 $x_1 = 0.658$ $y_1 = 5 = 5.28$ $y_2 = 5 = 5.28$ $y_3 = 5 = 5.28$ $y_4 = 5 = 5.28$ $y_4 = 5 = 5.28$

The calculated value of Chi-square is less than the table value. It means the difference is insignificant. Hence Ho is accepted.

Test of Endependence of Attributes:

A survey of industrial sales persons included questions on the age of respondents and the degree of job pressure on the soles persons felt in connection with the job. Data is presented below. Using a significance level of o.o., examine if there is any retationship between age & degree of job pressure.

Age (Years)	1)eg	ree of job	Pressure
00.00	Low	Medium!	High
enthan 25	32	25	17
25-34	22	19	20
35-54	3 17	20	25
. Above 55	15	24	26
			mariane.

Col:

	Degree	of job	plessi	ine
Age years	Low M	ledium k	ligh	Piotal
less 25	32	25	25	74
(24-29)	(24-85) (24-85)	(24.86) (24.86)	1	
1 05-34	(22	(20149)	10	
(20.02)	(2049)	(20.49)	5	c.L
35-54	(20-627)	(2063)	1.5	6 2
(20,35)	(20.82)	(20.83)		

Let us take	the null	hypothes	is that	J. /
there is no effectiveness age & dead	of the two rec of Lest	different drugs. A	pplying nahip	x test
Age (years)	Degree Low Me	of Job predium h	isure igh	Total
1ex 25 (24.29)	.32 (2485)	25 (24 86)	17 20	61
(20.02)	(20:49)	(20.49)	25	62
(20.35)	(20.82) 15	(20.83)	26	65
Above 55 (21.34)	(21.84)	(21.82)	88	262
134 applying	formula	ware test	Portur	

Arra. Arrange data in +x3 contigency

E values:			
$\frac{86 \times 74}{362} = 24.29, \frac{86 \times 61}{262} = 20.02, \frac{86 \times 62}{262} = 20.36$			
$86\times65=21.34$, $86\times6.74=24.85$, $88\times61=20.49$			
262 20.82 $88\times66 = 21.84$ $88\times79 = 24.86$			
262			
ADO	E	(0-E)	(0-E)2/E
32	21.29	59.44	259.44/24.29
	20.02		=, 2.441
22	20.02	3.92	0.196
17	20.35	11.22	0.551
15	21.34	40.19	1.883
25	2485	0.025	0.0009
19	20.49	2.22	0.108
20	20.82	0.67	0.032
24	21.84	4.66	0.214
17.	24.86	61.77	2.485
20	20.49	D:69 0.24	0.012
25	20.83	17.4	0 - 835
26	21.82	17.5	0.800
			I [(6-E)2]
	(1)		4.56

Table value at 0.01 for 6 d.f

= 16.812 The calculated value of chi-19 ware is lessthan table value. Et implies différence not significant. Hence, Ho is accepted.