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UNIT-I 

INTRODUCTION 

Algorithm 

Definition:   An algorithm is a set of steps of operations to solve a problem 

performing calculation, data processing, and automated reasoning tasks. An 

algorithm is an efficient method that can be expressed within finite amount of time 

and space. 

Algorithm Design 

The important aspects of algorithm design include creating an efficient algorithm to 

solve a problem in an efficient way using minimum time and space. 

To solve a problem, different approaches can be followed. Some of them can be 

efficient with respect to time consumption, whereas other approaches may be 

memory efficient.  

Characteristics of Algorithms 

The main characteristics of algorithms are as follows − 

• Effectiveness: Algorithms must have a unique name 

• Input and Output: Algorithms should have explicitly defined set of inputs and 

outputs 

• Definiteness: Algorithms are well-ordered with unambiguous operations 

• Finiteness: Algorithms halt in a finite amount of time. Algorithms should not 

run for infinity, i.e., an algorithm must end at some point  

Pseudo-code for Expressing Algorithms 

      Algorithm is basically sequence of instructions written in simple English 

language. Based on algorithm there are 2 more representations used by 

programmer, these are flow chart and pseudo-code. 

Flow chart: is a graphical representation of an algorithm. 

Pseudo-code: is a representation of an algorithm in which instruction sequence 

can be given with the help of programming constructs.  
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         Pseudo-code gives a high-level description of an algorithm without the 

ambiguity associated with plain text but also without the need to know the 

syntax of a particular programming language. 

       The running time can be estimated in a more general manner by using 

Pseudo-code to represent the algorithm as a set of fundamental operations which 

can then be counted. 

Steps for writing an algorithm: 

1. An algorithm is a procedure. It has two parts; the first part is head and the 

second part is 

body. 

2. The Head section consists of keyword Algorithm and Name of the 

algorithm with parameter list.  

E.g:  Algorithm  name1(p1, p2,…,p3) 

The head section also has the following: 

//Problem Description: 

//Input: 

//Output: 

3. In the body of an algorithm various programming constructs like if, for, 

while and some statements like assignments are used. 

4. The compound statements may be enclosed with { and } brackets. if, 

for, while can be closed by endif, endfor, endwhile respectively. Proper 

indention is must for block. 

5. Comments are written using // at the beginning. 

6. The identifier should begin by a letter and not by digit. It contains alpha 

numeric letters after first letter. No need to mention data types. 

7. The left arrow “←” used as assignment operator.  E.g. v←10. 

8. Boolean operators (TRUE, FALSE), Logical operators (AND, OR, NOT) 

and Relational  operators (<,<=, >, >=,=, ≠, <>) are also used. 
9. Input and Output can be done using read and write. 

10. Array[], if then else condition, branch and loop can be also used in 

algorithm. 
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Introduction 

Notation of an Algorithm 

Define Algorithm: 

An Algorithm is a sequence of unambiguous instructions for solving a problem 

that is for obtaining a required output for any legitimate (valid) input in a finite 

amount of time. 

                                     Problem 

   

                                       Algorithm 

                                         

          input                    “Computer”                output 

Example of an algorithm finding  GCD of two numbers m and n 

Euclid’s algorithm for computing gcd(m,n) 

    Step 1: If n=0, return the value of  ‘m’ as the answer and stop; otherwise,    

                 Proceed to Step 2. 

    Step 2: Divide m by n and assign the value of the remainder to r. 

    Step 3: Assign the value of n to m and the value of r to n. Goto Step 1. 

Pseudo-code of this algorithm 

ALGORITHM  Euclid(m,n) 

   //Computes gcd(m,n) by Euclid’s algorithm 

  //Input: Two nonnegative, not-both zero integers  m  and  n 

  //Output: Greatest common divisor of  m and  n 

  while n ≠ 0 do 

        r ← m mod n 

        m ←  n 

        n  ←  r 

   return m 

 

Tracing: 

Euclid(24,18)   →    Euclid(18,6)    →   Euclid(6,0) 

Hence  gcd(24,18)  is  6. 
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Fundamentals of Algorithmic Problem Solving 
 

 

 

(i) Understanding the Problem 

 This is the first step in designing of algorithm. 
 Read the problem’s description carefully to understand the problem 

statement completely. 
 Ask questions for clarifying the doubts about the problem. 
 Identify the problem types and use existing algorithm to find solution. 
 Input (instance) to the problem and range of the input get fixed. 
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(ii) Decision making 

The Decision making is done on the following: 

(a) Ascertaining the Capabilities of the Computational Device 
 In random-access machine (RAM), instructions are executed one 

after another (The central assumption is that one operation at a time). 

Accordingly, algorithms designed to be executed on such machines 

are called sequential algorithms. 

 In some newer computers, operations are executed concurrently, 

i.e., in parallel. Algorithms that take advantage of this capability are 

called parallel algorithms. 

 Choice of computational devices like Processor and memory is 

mainly based on space and time efficiency. 

 
(b) Choosing between Exact and Approximate Problem Solving 

 The next principal decision is to choose between solving the 

problem exactly or solving it approximately. 

 An algorithm used to solve the problem exactly and produce correct 

result is called an exact algorithm. 

If the problem is so complex and not able to get exact solution, 

then we have to choose an algorithm called an approximation 

algorithm. i.e., produces an approximate answer. E.g., extracting 

square roots, solving nonlinear equations, and evaluating definite 

integrals. 

 
(c) Algorithm Design Techniques 

 
 An algorithm design technique (or “strategy” or “paradigm”) is a 

general approach to solving problems algorithmically that is 

applicable to a variety of problems from different areas of 

computing. 

 

 

 Though Algorithms and Data Structures are independent, but they are 

combined together to develop program. Hence the choice of proper 

data structure is required before designing the algorithm. 

 Implementation of algorithm is possible only with the help of 

Algorithms and Data Structures. 

 Algorithmic strategy / technique / paradigm are a general 

approach by which many problems can be solved algorithmically. 

E.g., Brute Force, Divide and Conquer, Dynamic Programming, 

Greedy Technique and so on. 

 

 

 

Algorithms+ Data Structures = Programs 
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(iii) Methods of Specifying an Algorithm 

There are three ways to specify an algorithm. They are: 

a. Natural language 
b. Pseudocode 

c. Flowchart 

FIGURE 1.3 Algorithm Specifications 

Pseudocode and flowchart are the two options that are most widely used 

nowadays for specifying algorithms. 

 
a. Natural Language 

It is very simple and easy to specify an algorithm using natural language. But 

many times specification of algorithm by using natural language is not clear and 

thereby we get brief specification. 

Example: An algorithm to perform addition of two numbers. 

 

Such a specification creates difficulty while actually implementing it. Hence 

many programmers prefer to have specification of algorithm by means of 

Pseudocode. 
b. Pseudocode 

 Pseudocode is a mixture of a natural language and programming language 

constructs. Pseudocode is usually more precise than natural language. 

 For Assignment operation left arrow “←”, for comments two slashes 

“//”,if condition, for, while loops are used. 

 

Flowchart Pseudocode Natural Language 

Algorithm Specification 

Step 1: Read the first number, say a. 

Step 2: Read the first number, say b. 

Step 3: Add the above two numbers and store the result in c. 

Step 4: Display the result from c. 

ALGORITHM Sum(a,b) 

//Problem Description: This algorithm performs addition of two numbers 

//Input: Two integers a and b 

//Output: Addition of two integers 

c←a+b 

return c 
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This specification is more useful for implementation of any language. 

c. Flowchart 

In the earlier days of computing, the dominant method for specifying algorithms 

was a flowchart,  this representation technique has proved to be inconvenient. 

Flowchart is a graphical representation of an algorithm. It is a a method of 

expressing an algorithm by a collection of connected geometric shapes containing 

descriptions of the algorithm’s steps. 

 
 

Symbols Example: Addition of a and b 

 

Start state 

 

 

                               Transition / Assignment 

 

 

Processing/Inputread  

Input and Output 

                                Condition/Decision  

                                 Flow connectivity                  

                                                                                                             Stop state  

FIGURE 1.4 Flowchart symbols and Example for two integer addition. 

(iv) Proving an Algorithm’s Correctness 

 

 Once an algorithm has been specified then its correctness must be proved. 

 An algorithm must yields a required result for every legitimate input in a 

finite amount of time. 

 For example, the correctness of Euclid’s algorithm for computing the 
greatest common divisor stems from the correctness of the equality gcd(m, 
n) = gcd(n, m mod n). 

Start 
Start 

Input the value of a 

Input the value of b 

Display the value of c 

Stop 

c = a + b 

Stop 
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 A common technique for proving correctness is to use mathematical 

induction because an algorithm’s iterations provide a natural sequence of 
steps needed for such proofs. 
 

 The notion of correctness for approximation algorithms is less 

straightforward than it is for exact algorithms. The error produced by the 

algorithm should not exceed a predefined limit. 

 

(v) Analyzing an Algorithm 

For an algorithm the most important is efficiency. In fact, there are two 

kinds of algorithm efficiency. They are: 

 Time efficiency, indicating how fast the algorithm runs, and 

 Space efficiency, indicating how much extra memory it uses. 

 The efficiency of an algorithm is determined by measuring both time 

efficiency and space efficiency. 

 So factors to analyze an algorithm are: 

 Time efficiency of an algorithm 

 Space efficiency of an algorithm 

 Simplicity of an algorithm 

 Generality of an algorithm 

 

(vi) Coding an Algorithm 

 

 The coding / implementation of an algorithm is done by a suitable 

programming language like C, C++, JAVA. 

 The transition from an algorithm to a program can be done either 

incorrectly or very inefficiently. Implementing an algorithm correctly is 

necessary. The Algorithm power should not reduced by inefficient 

implementation. 

 Standard tricks like computing a loop’s invariant (an expression that does 

not change its value) outside the loop, collecting common subexpressions, 

replacing expensive operations by cheap ones, selection of programming 

language and so on should be known to the programmer. 

 Typically, such improvements can speed up a program only by a constant 

factor, whereas a better algorithm can make a difference in running time by 

orders of magnitude. But once an algorithm is selected, a 10–50% 

speedup may be worth an effort. 
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Important Problem Types 

We are going to introduce the most important problem types: 

    • Sorting 

    • Searching 

    • String processing 

    • Graph problems 

    • Combinatorial problems 

    • Geometric problems 

    • Numerical problems  

(i) Sorting 

 The sorting problem is to rearrange the items of a given list in 

nondecreasing (ascending) order. 
 Sorting can be done on numbers, characters, strings or records. 
 To sort student records in alphabetical order of names or by student 

number or by student grade-point average. Such a specially chosen piece of 

information is called a key. 

 An algorithm is said to be in-place if it does not require extra memory, E.g., 

Quick sort. 

 A sorting algorithm is called stable if it preserves the relative order of 

any two equal elements in its input. 

 

(ii) Searching 

 The searching problem deals with finding a given value, called a search 

key, in a given set. 

 There are plenty of searching algorithms to choose from. 

 E.g., Ordinary Linear search and fast binary search. 

 

(iii) String processing 

 A string is a sequence of characters from an alphabet. 

 Strings comprise letters, numbers, and special characters; bit strings, which 

comprise zeros and ones; and gene sequences, which can be modeled by 

strings of characters from the four- character alphabet {A, C, G, T}. It is 

very useful in bioinformatics. 

 Searching for a given word in a text is called string matching. 
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(iv) Graph problems 

 A graph is a collection of points called vertices, some of which are 

connected by line segments called edges. 

 Some of the graph problems are graph traversal, shortest path algorithm, 

topological sort, traveling salesman problem and the graph-coloring 

problem and so on. 

 

(v) Combinatorial problems 

 These are problems that ask, explicitly or implicitly, to find a combinatorial 

object such as a permutation, a combination, or a subset that satisfies certain 

constraints. 

 A desired combinatorial object may also be required to have some 

additional property such s a maximum value or a minimum cost. 
 In practical, the combinatorial problems are the most difficult problems in 

computing. 
 The traveling salesman problem and the graph coloring problem are 

examples of 
combinatorial problems. 
 

(vi) Geometric problems 

 Geometric algorithms deal with geometric objects such as points, lines, and 

polygons. 
 Geometric algorithms are used in computer graphics, robotics, and 

tomography. 
 The closest-pair problem and the convex-hull problem are comes under 

this category. 

 

(vii) Numerical problems 

 Numerical problems are problems that involve mathematical equations, 

systems of equations, computing definite integrals, evaluating functions, 

and so on. 

 The majority of such mathematical problems can be solved only 

approximately. 
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 FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM EFFICIENCY 
 

The efficiency of an algorithm can be in terms of time and space. The 

algorithm efficiency can be analyzed by the following ways. 

a. Analysis Framework. 
b. Asymptotic Notations and its properties. 
c. Mathematical analysis for Recursive algorithms. 

d. Mathematical analysis for Non-recursive algorithms. 

 

  

 Analysis Framework 

There are two kinds of efficiencies to analyze the efficiency of any algorithm. They 

are: 

 Time efficiency, indicating how fast the algorithm runs, and 

 Space efficiency, indicating how much extra memory it uses. 

 

The algorithm analysis framework consists of the following: 

 Measuring an Input’s Size 
 Units for Measuring Running Time 
 Orders of Growth 
 Worst-Case, Best-Case, and Average-Case Efficiencies 

 

(i) Measuring an Input’s Size 

 

      With the obvious observation of all the algorithms, some algorithms runs 

longer if the input size is large. And some algorithms takes small amount of time 

for smaller inputs. 

Example for larger inputs – Sorting of arrays, multiplication of larger matrices. 

Example for smaller inputs – GCD, Swapping etc. 

 

 

(ii) Units for Measuring Running Time 

We simply use some standard unit of time measurement such as a second, or 

millisecond, and so on. To measure the running time of the program implementing 

the algorithm is always not possible because of following drawbacks:  

 Dependence on the speed of a particular computer. 
 Dependence on the quality of a program implementing the algorithm. 
 The compiler used in generating the machine code. 
 The difficulty of clocking the actual running time of the program. 

     One possible approach is to count the number of times each of the algorithm’s 

operations are executed. This approach is excessively difficult. 
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The most important operation (+, -, *, /) of the algorithm, called the basic 

operation. Computing the number of times the basic operation is executed is easy. 

The total running time is determined by basic operations count. 

 

(iii) Orders of Growth 

  A difference in running times on small inputs is not what really distinguishes    

efficient algorithms from inefficient ones. 

 For example, the greatest common divisor of two small numbers, it is not 

immediately clear how much more efficient Euclid’s algorithm is compared 

to the other algorithms, the difference in algorithm efficiencies becomes 

clear for larger numbers only. 
 For large values of n, it is the function’s order of growth that counts just 

like the Table 1.1, which contains values of a few functions particularly 
important for analysis of algorithms. 

 

TABLE 1.1 Values (approximate) of several functions important for analysis of 

algorithms 

 

n   
√𝑛 

log2n n n log2n n2 n3 2n n! 

1 1 0 1 0 1 1 2 1 

2 1.4 1 2 2 4 4 4 2 

4 2 2 4 8 16 64 16 24 

8 2.8 3 8 2.4•101 64 5.1•102 2.6•102 4.0•104 

10 3.2 3.3 10 3.3•101 102 103 103 3.6•106 

16 4 4 16 6.4•101 2.6•102 4.1•103 6.5•104 2.1•1013 

102 10 6.6 102 6.6•102 104 106 1.3•1030 9.3•10157 

103 31 10 103 1.0•104 106 109  

Very big 

computation 

104 102 13 104 1.3•105 108 1012 

105 3.2•102 17 105 1.7•106 1010 1015 

106 103 20 106 2.0•107 1012 1018 

 

 
(iv) Worst-Case, Best-Case, andAverage Case Efficiencies  

           We establish that it si reasonable to measure the algorithm’s effiency as a 

function of parameter indicating the size of the algorithm’s input. But for many 

algorithms the runtime depends not only on the input size but also the specific 

type of input. 

            For example, sequential search. In this case we are going to search each 

and every element in the list until a search element is found. 
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                                                      Consider Sequential Search algorithm some search key K 

   ALGORITHM SequentialSearch(A[0..n - 1], K) 

// Searches for a given value in a given array by sequential search 

// Input: An array A[0..n - 1] and a search key K 

// Output: The index of the first element in A that matches K or -1 if there 

are //  no matching elements 

i ←0 

while i < n and A[i] ≠ K do 

i ←i +1  

if i < n return i  

else return -1 

Clearly, the running time of this algorithm can be quite different for the same list 

size n. 

 

In the worst case, there is no matching of elements or the first matching 

element can found at last on the list. In the best case, there is matching of elements 

at first on the list. 

 

Worst-case efficiency 

        The worst-case efficiency is found in two cases. They are 

1. When there is no matching element. 

2. The first matching element happens to be the last element in the list. 

         The large no. of  key comparisons among all possible inputs of size ‘n’. 

                           Cworst(n) = n. 

    The time taken for worst cas is highest than remaining cases.     
 
Best case efficiency 

      The best-case efficiency of an algorithm is its efficiency for the best case 

input  of size n. The algorithm runs the fastest among all possible inputs of that 

size n. 

      In sequential search, If we search a first element in list of size n. (i.e. first 

element equal to a search key),  then the running time is Cbest(n) = 1. 

      Neither the worst-case efficiency nor the best-case efficiency keeps the 

necessary information on the ‘random’ or ‘typical’ input. 

 

Average case efficiency 

The Average case efficiency lies between best case and worst case. 
To analyze the algorithm’s average case efficiency, we must make some 
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assumptions about possible inputs of size n. 
The standard assumptions are that 

o The probability of a successful search is equal to p (0 ≤ p ≤ 1) and 
o The probability of the first match occurring in the ith position of the 

list is the same for every i. 

 

 

 

 ASYMPTOTIC NOTATIONS  
 

Asymptotic notation is a notation, which is used to take meaningful 

statement about the efficiency of a program. 

The efficiency analysis framework concentrates on the order of growth of 

an algorithm’s basic operation count as the principal indicator of the algorithm’s 

efficiency. 

To compare and rank such orders of growth, computer scientists use three 

notations, they are: 

 O - Big oh notation 
 Ω - Big omega notation 
 Θ - Big theta notation 

Let t(n) and g(n) can be any nonnegative functions defined on the set of 

natural numbers. 
The algorithm’s running time t(n) usually indicated by its basic operation count 
C(n), and g(n), 
some simple function to compare with the count. 

 

Example: 
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(i) O - Big oh notation 

 

Definition: A function t(n) is said to be in O(g(n)), denoted 𝑡 (𝑛) ∈ 𝑂(𝑔(𝑛)), if t 

(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there 

exist some positive constant c and some nonnegative integer n0 such that 

𝑡 (𝑛) ≤ 𝑐𝑔(𝑛) fo𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0. 

 

 

                    FIGURE 1.5 Big-oh notation: 𝑡 (𝑛) ∈ 𝑂(𝑔(𝑛)). 

 

Example 1: Prove the assertions 100𝑛 + 5 ∈ 𝑂(𝑛2). 

Proof: 100n + 5 ≤ 100n + n (for all n ≥ 5) 

= 101n 

≤ 101n2  
Since, the definition gives us a lot of freedom in choosing specific values 
for constants c and n0. We have c=101 and n0=5 
 

Example 2: Prove the assertions 100𝑛 + 5 ∈ 𝑂(𝑛). 

Proof: 100n + 5 ≤ 100n + 5n (for all n ≥ 1) 

= 105n 

i.e., 100n + 5 ≤ 105n  

i.e.,  t(n) ≤ cg(n) 

±100𝑛 + 5 ∈ 𝑂(𝑛) with c=105 and n0=1 
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(ii) Ω - Big omega notation 

Definition:  A function t(n) is said to be in Ω(g(n)), denoted t(n) ∈ Ω(g(n)), if t(n) 

is bounded below by some positive constant multiple of g(n) for all large n, i.e., if 

there exist some positive constant c and some nonnegative integer n0 such that 

t (n) ≥ cg(n) for all n ≥ n0. 

 

Where t(n) and g(n) are nonnegative functions defined on the set of natural 

numbers. 

 

 

                  FIGURE 1.6 Big-omega notation: t (n) ∈ Ω (g(n)). 

 

Example: Prove the assertions n3+5n ∈ Ω (n2). 

Proof:          n3+5n  ≥  n2 (for all n ≥ 0) 

i.e., by definition  t(n) ≥ cg(n), where c=1 and n0=0 

 

(iii) Θ - Big theta notation 

Definition:  A function t(n) is said to be in Θ(g(n)), denoted t(n) ∈ Θ(g(n)), if t(n) 

is bounded both above and below by some positive constant multiples of g(n) for 

all large n, i.e., if there exist some positive constants c1 and c2 and some 

nonnegative integer n0 such that 

c2 g(n) ≤ t (n) ≤ c1 g(n) for all n ≥ n0. 

 

Where t(n) and g(n) are nonnegative functions defined on the set of natural 

numbers. 
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                    FIGURE 1.7 Big-theta notation: t (n) ∈ Θ(g(n)). 

 

Example : 
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Mathematical Analysis of Non-recursive Algorithms 
General Plan for Analyzing the Time Efficiency of Non-recursive Algorithms 

1. Decide on a parameter (or parameters) indicating an input’s size. 
2. Identify the algorithm’s basic operation. 

3. Check whether the number of times the basic operation is executed depends 

only on the size of an input. If it also depends on some additional property, 

the worst-case, average-case, and, if necessary, best-case efficiencies have 

to be investigated separately. 

4. Set up a sum expressing the number of times the algorithm’s basic operation 

is executed. 

5. Using standard formulas and rules of sum manipulation either find a 

closed form formula for the count or at the least, establish its order of 

growth. 

 

EXAMPLE 1: Consider the problem of finding the value of the largest 

element in a list of n numbers. Assume that the list is implemented as an array 

for simplicity. 

ALGORITHM  MaxElement(A[0..n − 1]) 

//Determines the value of the largest element in a given array 

//Input: An array A[0..n − 1] of real numbers 

//Output: The value of the largest element in A 

maxval ←A[0] 

for i ←1 to n − 1 do 

if A[i]>maxval 

maxval←A[i] 

return maxval 

Algorithm analysis 

     The measure of an input’s size here is the number of elements in the array, i.e., n. 
There are two operations in the for loop’s body: 

o The comparison A[i]> maxval and 
o The assignment maxval←A[i]. 

      Let C(n) denotes the number of times this comparison is executed. The 

algorithm makes one comparison on each execution of the loop, which is repeated 

for each value of the loop’s variable i within the bounds 1 and n-1.  Therefore, the 

sum for C(n) is calculated as follows: 
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 This is an easy sum to compute because it is nothing other than 1 repeated n-1 

times. Thus, 

 

 

 

 

 

 

Basic rules of Sum manipulations: 

Summation formulas: 

 

 

EXAMPLE 2: Consider the element uniqueness problem: check whether all 

the Elements in a given array of n elements are distinct. 

ALGORITHM  UniqueElements(A[0..n − 1]) 

//Determines whether all the elements in a given array are distinct 

//Input: An array A[0..n − 1] 

//Output: Returns “true” if all the elements in A are distinct and “false” 

otherwise 

for i ←0 to n − 2 do 

for j ←i + 1 to n − 1 do 

if A[i]= A[j ] return false 

return true 
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Algorithm Analysis 

 The natural measure of the input’s size here is again n (the number of 

elements in the array). 

 
 Since the innermost loop contains a single operation (the comparison of 

two elements), we 
should consider it as the algorithm’s basic operation. 

 The number of element comparisons depends not only on n but also on 

whether there are equal elements in the array and, if there are, which array 

positions they occupy. We will limit our investigation to the worst case 

only. 

 One comparison is made for each repetition of the innermost loop, i.e., for 

each value of the loop variable j between its limits i + 1 and n − 1; this is 

repeated for each value of the outer loop, i.e., for each value of the loop 

variable i between its limits 0 and n − 2. 

 

 
 

 

Example 3:  Consider matrix multiplication. Given two n × n matrices A and B, 

find the time efficiency of the definition-based algorithm for computing their 

product C = AB. By definition  C an n × n matrix whose elements are computed 

as the scalar (dot) products of the rows of matrix A and the columns of matrix B: 

 

where C[i, j ]= A[i, 0]B[0, j]+ . . . + A[i, k]B[k, j]+ . . . + A[i, n − 1]B[n − 1, j] 

for every pair of indices 0 ≤ i, j ≤ n − 1. 
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ALGORITHM  MatrixMultiplication(A[0..n − 1, 0..n − 1], B[0..n − 1, 0..n − 1]) 

//Multiplies two square matrices of order n by the definition-based algorithm 

//Input: Two n × n matrices A and B 

//Output: Matrix C = AB 

for i ←0 to n − 1 do 

for j ←0 to n − 1 do 

C[i, j ]←0.0 

for k←0 to n − 1 do 

C[i, j ]←C[i, j ]+ A[i, k] ∗ B[k, j] 

return C 

 Algorithm Analysis: 

       Here the basic operations are multiplication and addition. One multiplication 

executed on each repetition in the inner most loop. Which is denoted by ‘k’ and it is 

from 0 to n-1. Therefore, 

           The total number of multiplications expressed as  

                           

Now, we can compute this sum by using formula  

 

 

  

The time efficiency of matrix based on the algorithm  

 

 

  Where Cm is only matrix multiplication content. But, then there is also addition 

basic operation.  

     Therefore the total time efficiency of matrix is  
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  Mathematical Analysis of Recursive Algorithms 
 

General Plan for Analyzing the Time Efficiency of Recursive Algorithms 

1. Decide on a parameter (or parameters) indicating an input’s size. 
2. Identify the algorithm’s basic operation. 
3. Check whether the number of times the basic operation is executed can 

vary on different inputs of the same size; if it can, the worst-case, average-

case, and best-case efficiencies must be investigated separately. 

4. Set up a recurrence relation, with an appropriate initial condition, for the 

number of times the basic operation is executed. 

5. Solve the recurrence or, at least, ascertain the order of growth of its solution. 

 

EXAMPLE 1: Compute the factorial function F(n) = n! for an arbitrary 

nonnegative integer n.  

Since n!= 1*. . . . * (n − 1) * n = (n − 1)! * n, for n ≥ 1 and 0!= 1 by 

definition, we can compute  

                                                          F(n) = F(n − 1) * n with the following recursive algorithm. 

  

ALGORITHM F(n) 

//Computes  n!  recursively 

//Input: A nonnegative  integer n 

//Output: The value of n! 

if  n = 0 return 1 

else return F(n − 1) * n 

Algorithm analysis 

          For simplicity, we consider n itself as an indicator of this algorithm’s 

input size. i.e. 1. 

           The basic operation of the algorithm is multiplication, whose number of 

executions we denote M(n). Since the function F(n) is computed according to 

the formula F(n) = F(n −1)•n for n > 0. 

     The number of multiplications M(n) needed to compute it must satisfy the 

equality 
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Recurrence relations 

The last equation defines the sequence M(n) that we need to find. This 

equation defines M(n) not explicitly, i.e., as a function of n, but implicitly as a 

function of its value at another point, namely n − 1. Such equations are called 

recurrence relations or recurrences. There are several techniques for solving the 

recurrence relations. 

 Here, we are going to use the back ward substitutions. The way it applies 

for solving a particular equation is as follows: 

 

M(n) = M(n − 1) + 1 substitute M(n − 1) = M(n − 2) + 1 

= [M(n − 2) + 1]+ 1 

= M(n − 2) + 2 substitute M(n − 2) = M(n − 3) + 1 

= [M(n − 3) + 1]+ 2 

= M(n − 3) + 3 

… 

= M(n − i) + i 

… 

= M(n − n) + n 

= n. 

                            Therefore M(n)=n. 

 

 

EXAMPLE 2: consider educational workhorse of recursive algorithms: the 

Tower of Hanoi puzzle. We have n disks of different sizes that can slide onto any 

of three pegs. Consider A (source), B (auxiliary), and C (Destination). Initially, 

all the disks are on the first peg in order of size, the largest on the bottom and the 

smallest on top. The goal is to move all the disks to the third peg, using the second 

one as an auxiliary. 

 

 

ALGORITHM TOH(n, A, C, B) 

//Move disks from source to destination recursively 

//Input: n disks and 3 pegs A, B, and C 

//Output: Disks moved to destination as in the source order. 
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if n=1 

                Move disk from A to C 

            else 

              Move top n-1 disks from A to B using C 

                                                                         TOH(n - 1, A, B, C) 

             Move top n-1 disks from B to C using A  

                                                                 TOH(n - 1, B, C, A) 

 

Algorithm analysis 

The number of moves M(n) depends on n only, and we get the 

following recurrence equation for it: M(n) = M(n − 1) + 1+ M(n − 1) for n > 1. 

With the obvious initial condition M(1) = 1, we have the following recurrence 

relation for the number of moves M(n): 

M(n) = 2M(n − 1) + 1 for n > 1,  

M(1) = 1. 

We solve this recurrence by the same method of backward substitutions: 

M(n) = 2M(n − 1) + 1 sub. M(n − 1) = 2M(n − 2) + 1 

= 2[2M(n − 2) + 1]+ 1 

= 22M(n − 2) + 2 + 1 sub. M(n − 2) = 2M(n − 3) + 1 

= 22[2M(n − 3) + 1]+ 2 + 1 

= 23M(n − 3) + 22 + 2 + 1 sub. M(n − 3) = 2M(n − 4) + 1 

= 24M(n − 4) + 23 + 22 + 2 + 1 

… 

 

= 2iM(n − i) + 2i−1 + 2i−2 + . . . + 2 + 1= 2iM(n − i) + 2i − 1. 

… 

Since the initial condition is specified for n = 1, which is achieved 

for i = n − 1,  

M(n) = 2n−1M(n − (n − 1)) + 2n−1 – 1  

         = 2n−1M(1) + 2n−1 – 1 

         = 2n−1 + 2n−1 − 1= 2n − 1. 

Thus, we have an exponential time algorithm. 
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Empirical Analysis of Algorithms 

        Empirical analysis is an evidence-based approach to the study and 

interpretation of information. The empirical approach relies on real-world 

data, metrics and results rather than theories and concepts.   Empirical analysis 

never gives an absolute answer, however, only a most likely answer based 

on probability.    

 

          The principal alternative to the mathematical analysis of an algorithm’s 

efficiency is its empirical analysis. This approach implies steps spelled out in the 

following plan. 

 

 General Plan for the Empirical Analysis of Algorithm Time Efficiency  

1. Understand the experiment’s purpose. 

2. Decide on the efficiency metric M to be measured and the measurement unit 

(an operation count vs. a time unit). 

3. Decide on characteristics of the input sample (its range, size, and so on). 

4. Prepare a program implementing the algorithm (or algorithms) for the exper-

imentation. 

5. Generate a sample of inputs. 

6. Run the algorithm (or algorithms) on the sample’s inputs and record the data 

observed. 

7. Analyze the data obtained. 

           Let us discuss these steps one at a time. There are several different goals one 

can pursue in analyzing algorithms empirically. They include checking the accuracy 

of a theoretical assertion about the algorithm’s efficiency, comparing the efficiency 

of several algorithms for solving the same problem or different imple-mentations of 

the same algorithm, developing a hypothesis about the algorithm’s efficiency class, 

and ascertaining the efficiency of the program implementing the algorithm on a 

particular machine. 

            In particular, the goal of the experiment should influence, if not dictate, how 

the algorithm’s efficiency is to be measured. The first alternative is to insert a 

counter (or counters) into a program implementing the algorithm to count the 

number of times the algorithm’s basic operation is executed. This is usually a 

straightforward operation. 

          The second alternative is to time the program implementing the algorithm in 

question. The easiest way to do this is to use a system’s command, such as 

the time command in UNIX. 

 

https://searchcustomerexperience.techtarget.com/definition/business-metric
https://whatis.techtarget.com/definition/probability
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            The empirical data obtained as the result of an experiment need to be 

recorded and then presented for an analysis. Data can be presented numerically in a 

table or graphically in a scatterplot, i.e., by points in a Cartesian coordinate system. 

It is a good idea to use both these options whenever it is feasible because both 

methods have their unique strengths and weaknesses. 

          The principal advantage of tabulated data lies in the opportunity to manip-

ulate it easily. For example, one can compute the ratios M(n)/g(n) where g(n) is a 

candidate to represent the efficiency class of the algorithm in question. If the 

algorithm is indeed in  (g(n)), most likely these ratios will converge to some pos-

itive constant as n gets large. 

          One of the possible applications of the empirical analysis is to predict the al-

gorithm’s performance on an instance not included in the experiment sample. For 

example, if you observe that the ratios M(n)/g(n) are close to some constant c for 

the sample instances, it could be sensible to approximate M(n) by the prod-

uct cg(n) for other instances, too.  

          We can implement one of several known algorithms for gener-ating 

(pseudo)random numbers. The most widely used and thoroughly studied of such 

algorithms is the linear congruential method. 

ALGORITHM     Random(n, m, seed, a, b) 

 //Generates a sequence of n pseudorandom numbers according to the linear 

     congruential method 

 //Input: A positive integer n and positive integer parameters m, seed, a, b  

//Output: A sequence r1, . . . , rn of n pseudorandom integers uniformly 

  distributed among integer values between 0 and m – 1 

 //Note: Pseudorandom numbers between 0 and 1 can be obtained  by treating the 

integers generated as digits after the decimal point 

r0 ← seed 

for i ← 1 to n do 

 ri ← (a ∗ ri−1 + b) mod m 

Here is a partial list of recommen-dations based on the results of a sophisticated 

mathematical analysis : seed may be chosen arbitrarily and is often set to the current 

date and time; m should be large and may be conveniently taken as 2w, where w is 

the computer’s word size; a should be selected as an integer between 0.01m and 

0.99m with no particular pattern in its digits but such that a mod 8 = 5; and the 

value of b can be chosen as 1. 
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Algorithm Visualization 
 

      In addition to the mathematical and empirical analyses of algorithms, there is 

yet a third way to study algorithms. It is called algorithm visualization and can be 

defined as the use of images to convey some useful information about algorithms. 

That information can be a visual illustration of an algorithm’s operation, of its per-

formance on different kinds of inputs, or of its execution speed versus that of other 

algorithms for the same problem. To accomplish this goal, an algorithm visualiza-

tion uses graphic elements—points, line segments, two- or three-dimensional bars, 

and so on—to represent some “interesting events” in the algorithm’s operation.  

          There are two principal variations of algorithm visualization:  Static algorithm 

visualization  Dynamic algorithm visualization, also called algorithm animation. 

         Static algorithm visualization shows an algorithm’s progress through a series 

of still images. Algorithm animation, on the other hand, shows a continuous, movie-

like presentation of an algorithm’s operations. Animation is an arguably more 

sophisticated option, which, of course, is much more difficult to implement. 

         Early efforts in the area of algorithm visualization go back to the 1970s. The 

watershed event happened in 1981 with the appearance of a 30-minute color sound 

film titled Sorting Out Sorting. This algorithm visualization classic was produced at 

the University of Toronto by Ronald Baecker with the assistance of D.  

        There are two principal applications of algorithm visualization: research and 

education. Potential benefits for researchers are based on expectations that algo-

rithm visualization may help uncover some unknown features of algorithms. For 

example, one researcher used a visualization of the recursive Tower of Hanoi algo-

rithm in which odd- and even-numbered disks were colored in two different colors. 

He noticed that two disks of the same color never came in direct contact during the 

algorithm’s execution. This observation helped him in developing a better non-

recursive version of the classic algorithm.  

       The application of algorithm visualization to education seeks to help students 

learning algorithms. The available evidence of its effectiveness is decisively mixed. 

Although some experiments did register positive learning outcomes, others failed to 

do so. The increasing body of evidence indicates that creating sophisticated 

software systems is not going to be enough. In fact, it appears that the level of 

student involvement with visualization might be more important than specific 

features of visualization software.  
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Brute Force 
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Best case efficiency 

      The best-case efficiency of an algorithm is its efficiency for the best case 

input  of size n. The algorithm runs the fastest among all possible inputs of that 

size n. 

      In sequential search, If we search a first element in list of size n. (i.e. first 

element equal to a search key),  then the running time is Cbest(n) = 1. 

 

Worst-case efficiency 

        The worst-case efficiency is found in two cases. They are 

1. When there is no matching element. 

2. The first matching element happens to be the last element in the list. 

         The large no. of  key comparisons among all possible inputs of size ‘n’. 

                           Cworst(n) = n. 

     The Time Complexity of Sequential Search is O(n). 

    The time taken for worst cas is highest than remaining cases.     
 

 

Exhaustive Search 

  
Definition:  Exhaustive search is simply a brute-force approach to combinatorial 

problems. It suggests generating each and every element of the problem domain, 

selecting those of them that satisfy all the constraints, and then finding a desired 

element.  

           A brute force solution to a problem involving search for an element with a 

special property, usually among combinatorial objects such as a permutations, 

combinations, or subsets of a set. 

 

Method  

• Construct a way of listing all potential solutions to the problem in a systematic  

manner 

• all solutions are eventually listed  

• no solution is repeated 

 • Evaluate solutions one by one, perhaps disqualifying infeasible ones and keeping 

track of the best one found so far  

• When search ends, announce the winner 

 

We illustrate exhaustive search by applying it to three important problems: the 

traveling salesman problem, the knapsack problem, and the assignment problem.  
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Traveling Salesman Problem 

          The traveling salesman problem (TSP) has been intriguing researchers for 

the last 150 years by its seemingly simple formulation, important applications, and 

interesting connections to other combinatorial problems.  

            In layman’s terms, the problem asks to find the shortest tour through a given 

set of n cities that visits each city exactly once before returning to the city where it 

started. 

           The problem can be conveniently modeled by a weighted graph, with the 

graph’s vertices representing the cities and the edge weights specifying the 

distances. Then the problem can be stated as the problem of finding the 

shortest Hamiltonian circuit of the graph. (A Hamiltonian circuit is defined as a 

cycle that passes through all the vertices of the graph exactly once).  

 

 
Example: 
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Knapsack Problem 

         Here is another well-known problem in algorithmics. Given n items of known 

weights w1, w2, . . . , wn and values v1, v2, . . . , vn and a knapsack of capacity W , 

find the most valuable subset of the items that fit into the knapsack. 

        The exhaustive-search approach to this problem leads to generating all the 

subsets of the set of n items given, computing the total weight of each subset in 

order to identify feasible subsets (i.e., the ones with the total weight not exceeding 

the knapsack capacity), and finding a subset of the largest value among them. As an 

example, the solution to the instance of Figure 3.8a is given in Figure 3.8b. Since 

the number of subsets of an n-element set is 2n, the exhaustive search leads to 

a  (2n) algorithm, no matter how efficiently individual subsets are generated. 
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Assignment Problem 

         In our third example of a problem that can be solved by exhaustive search, 

there are n people who need to be assigned to execute n jobs, one person per job. 

(That is, each person is assigned to exactly one job and each job is assigned to 

exactly one person.) The cost that would accrue if the ith person is assigned to 

the j th job is a known quantity C[i, j ] for each pair i, j = 1, 2, . . . , n. The problem 

is to find an assignment with the minimum total cost. 

       A small instance of this problem follows, with the table entries representing the 

assignment costs C[i, j ]: 

 

          We can describe feasible solutions to the assignment problem as n-tuples   

 j1, . . . , jn in which the ith component, i = 1, . . . , n, indicates the column of 

the element selected in the ith row (i.e., the job number assigned to the ith person). 

For example, for the cost matrix above, 2, 3, 4, 1 indicates the assignment of 

Person 1 to Job 2, Person 2 to Job 3, Person 3 to Job 4, and Person 4 to Job 1. 

         The requirements of the assignment problem imply that there is a one-to-one 

correspondence between feasible assignments and permutations of the 

first n integers. Therefore, the exhaustive-search approach to the assignment 

problem would require generating all the permutations of integers 1, 2, . . . , 

n, computing the total cost of each assignment by summing up the corresponding 

elements of the cost matrix, and finally selecting the one with the smallest sum. A 

few first iterations of applying this algorithm to the instance given above are 

shown in Figure 3.9. 

 
*********************** 
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UNIT-II 

Divide-and-Conquer 

General Method:  

               Divide-and-Conquer is the best known algorithm design technique. This 

algorithm work according to the following  general plan: 

1. A problem is divided into several sub problems of the same type, ideally of about  

    equal size. 

2. The sub problems are solved separately. 

3. If necessary, the solutions to the sub problems are combined to get a solution to 

    the original problem. 

 

The Divide-and-Conquer technique diagram 
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       Let us consider the problem of computing the sum of ‘n’ numbers,  

a0, a1,.. an-1 . If n > 1,  we can divide the problem into two sub problems, then we 

compute the first n /2 numbers and then we compute the remaining numbers. Once 

each of these two sub problems are computed we can add their values to get the 

solution to the sum of ‘n’ numbers. 

 

 a0 + ……+ an-1  

 (a0 + ….+ a(n/2)-1) + (an/2 + ….+ an-1) 

  

      More  generally an instance of size ‘n, can be divided into smaller instances. 

    

        T(n) =       g(n) 

                         T(n1) + T(n2) +….+f(n)     for all n > 1 

 

 

 Here  T(n) is represented for the time taken in order to divide and conquer of   any 

input of size ‘n’.   

        g(n) represented for the time taken to compute the smaller instances for 

smaller inputs.   

        f(n) is denoted for the time taken for dividing the problem an combining the 

solutions of sub problems. 

 

Complexity: 

 

            T(n) =       T(n) = T(1) = 1          where n =1  

                             a.T(n/b) + f(n)             for all n>1   

     

       The above equation is called as the recurrence relation of divide and conquer.  

‘a’ denotes that how many no. of times we are going to find the time complexity.  

‘b’ denotes for how many no. of smaller instances are made. 

 

Master Theorem: 

 

          If f(n) ϵ ϴ(nd) where d ≥ 0 in the recurrence equation T(n) = a. T(n/b) + f(n), 

then  
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For example, the recurrence equation for the no. of additions A(n) made by the 

divide and conquer summation algorithm on inputs of size n = 2k is 

                      

                                        A(n) = 2. A(n /2) + 1 

  

 Thus, for this example a =2, b =2 and d = 0.  

  Hence, a > bd we can represent the order of growth  

 

                            A(n) ϵ ϴ(n log 
b

a ) = ϴ( n log
2
2) = ϴ(n) 

 

   according to the Master Theorem. 

       

   

Applications of Divide and Conquer Approach 

Following are some problems, which are solved using divide and conquer 

approach. 

 Finding the maximum and minimum of a sequence of numbers 

 Strassen’s matrix multiplication 

 Merge sort 

 Binary search 

 

Merge Sort 

 
            Merge Sort is a perfect example of a successful application of the divide-

and-conquer technique. In this technique it sorts the given elements of range  

A[0,….n-1] by dividing it into two halves A[0,….(n/2)-1] and A[n/2,….n-1], 

sorting each of them recursively, and then merging the two smaller sorted arrays 

into a single sorted array. 

 

          The merging of two sorted arrays can be done as follows:  

Two points are initialized to point to the first elements of two arrays, that are being 

merge. Then the elements pointed to are compared and smaller of them added to 

new array  i.e, being constructed. This operation is continued until one of the two 

arrays exhausted and remaining elements of other array are copied to the end of the 

new array. 
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Example:1 Array size is odd 

 

 
 

Example:2  Array size is even 
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Pseudo code of Merge Sort: 
 

ALGORITHM MergeSort( A[0…n-1] 

// Sorts array A[0..n-1] by recursive merge sort 

// Input: An array A[0..n-1] of orderable elements 

// Output: Array A[0..n-1] sorted in nondecreasing order 

If n > 1 

     copy A[0…(n/2)-1] to B[0…(n/2)-1] 

     copy A[n/2…n-1] to C[n/2…n-1] 

     Mergesort(B[0…(n/2)-1]) 

     Mergesort(C[n/2…n-1]) 

     Merge(B,C,A) 

 

Algorithm for Merge: 
 

ALGORITHM Merge(B[0…p-1],C[0…q-1],A[0…p+q-1]) 

    i ← 0, j ← 0, k ← 0 

    While i<p and j<q do 

        If  B[i] ≤ C[j] 

            A[k]  ← B[i];    i ← i+1 

        else A[k]  ← C[j];   j ← j+1 

         k ← k+1 

    if  i = p 

        copy C[j…q-1] to A[k…p+q-1] 

    else 

        copy B[i…p-1] to A[k…p+q-1] 

 

 

Recurrence Relation for Merge Sort 

 Recurrence Relation for the number of key comparisons C(n) is 

            C(n) = 2. C(n/2) + Cmerge(n)    for n > 1, C(1) = 0 
      The number of key comparisons perform during the merging stage. 

At each step, exactly one comparison is made, after which the total 

number of elements in two arrays still needed to be processed is reduced 
by one. 

      In the worst case, neither of  the two arrays becomes empty before 

the other one contains just one element. Therefore, for the worst case,  
  Cmerge(n) = n-1,  we have the recurrence  

                  Cworst(n) = 2.Cworst(n/2) + n-1      for n > 1.  Cworst(1) = 0. 

Hence, according to Master Theorem, 

                   Cworst(n) ϵ ϴ(n log n) 
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Quick Sort 
 

         Quick Sort is the other important sorting algorithm that is based on the 

divide-and-conquer approach. Merge Sort is done based on the values or elements 

in the arrays where as Quick Sort is done based on the partitions of the elements in 

the array. 

         If we rearrange the elements in the quick sort of the given array A[0..n-1] in 

order to achieve its partition, a situation is occurred where all the elements before 

some position S are smaller than or equal to A[S] and all the elements after 

position S are greater than or equal to A[S]. 

 

                     A[0,…..S-1]  A[S]  A[S+1,…n-1]  

 

                           ≤ A[S]                      ≥ A[S] 

 

       Obviously, after a partition, A[S] will be in its final position in the sorted 

array, and we can continue sorting the two sub arrays independently (as we have 

done above). 

 

ALGORITHM Quicksort( A[l..r] ) 

// Sorts a sub array by quick sort 

// Input: A sub array A[l..r] of A[0..n-1], defined by its left and right indices  

    l and r 

// Output: The sub array A[l..r] sorted in non-decreasing order 

if l < r 

       s ← partition( A[l..r] )    // s is a split position 

       Quicksort( A[l..s-1] ) 

       Quicksort( A[s+1..r] ) 

 

 A partition of A[0..n-1] is more generally of its sub array A[l..r] (0 ≤ l<r ≤ n-1) 

        

          First we select an element with respect to whose value we are going to divide 

into sub array. We call that element is ‘pivot’ element or ‘key’ element. After 

several alternative procedures for rearranging elements to achieve a partition, two 

scans for the sub array will be done from left to right and right to left. 

          The left to right scan starts at the second element.  Since, we want the 

element greater than the pivot element to be in the first part of the sub array. The 

elements in the second part of the array must be smaller than the pivot and stops on 

encountering the first element smaller or equal to pivot element. If the scanning 

integer i and j have not crossed i.e.m i < j we simply exchange A[i] and A[j] and 

resume the scans by incrementing ‘i’ and decrementing ‘j’. 
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                                       → i                                   j ←  

p all are ≤ p ≥ p ..... ≤ p all are ≥ p 

 

      If we scanning indices have crossed over, i.e., i > j, we have partitioned the 

array after exchanging the pivot with A[j]: 

 

                                           j ←       → i 

p all are ≤ p ≤ p ≥ p all are ≥ p 

 

 Finally, if the scanning indices stop while pointing to the same element. i.e., i = j  

 

                                           → i = j ← 

p all are ≤ p = p all are ≥ p 

 

                     l                                                                            r 

Example:    44   33   11   55   77   90   40   60   99   22   88   66 

                     ↑  i  →          i                                          j        ←   j   

               Pivot  

                                            i < j  (swap 55 and 22) 

 

                    44   33   11   22   77   90   40   60   99   55   88   66 

                      i  →                     i             j                           ←   j   

                                           i < j  (swap 77 and 40) 

 

                    44   33   11   22   40   90   77   60   99   55   88   66  

                     i  →                      j      i                                   ←   j   

                                           i > j 

                    (here i > j then swap pivot with A[j], i.e., swap 44 and 40)  

 

                    40    33   11   22   44   90   77   60   99   55   88   66 

                                                                                                          

                               ≤ 44                                      ≥ 44 

  Similarly same process applied to the two sub arrays. 

 

Algorithm for Partition: 

 

ALGORITHM Partition( A[l..r] ) 

 // Partitions a sub array by using its first element as a pivot 

// Input: A sub array A[l..r] of A[0,,n-1] defined by its left and right indices 

//             l and r ( l < r)  

// Output: The sub array A[l..r], sorted in non-decreasing order 
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if l < r  

   p ← A[l] 

   i ← l; j ← r 

   repeat  

         repeat  i ← i + 1 until A[i] ≥ p 

         repeat  j ← j - 1 until A[j] ≤ p 

         swap (A[i], A[j]) 

  until i ≥ j 

  swap (A[i], A[j])    // undo last swap when i ≥ j 

  swap (A[l], A[j])  

  return j 

 

The recurrence relation for Quick Sort:  The recurrence relation for quick sort is 

                  C(n) = 2. C(n/2) + n   for all   n > 1 

       If all the splits happen in the middle of the corresponding sub arrays, we will 

treated as best case efficiency.  The number of key comparisons in the best case 

will satisfy the following recurrence equation, 

            Cbest(n) = 2. Cbest(n/2) + n   for all n > 1,     Cbest(1) = 0. 

According to Master Theorem,     Cbest(n) = ϴ( n log2 n)       

 

       In the worst case, all the splits will be skewed to the extreme, one of the two 

sub arrays will be empty while the size of the other will be just one less than the 

size of a sub array being partitioned. 

      If A[0,...n-1] is a strictly increasing array and we use A[0] as the pivot, the left-

to-right scan will stop on A[i] while right-to-left scan will go all the way to reach 

A[0]. So after making n+1 comparisons to get to the partition and exchanging the 

pivot A[0] with itself, the algorithm will find itself with strictly increasing array 

A[1...n-1] to sort. This process continue until the last one A[n-2..n-1]. The total 

number of key comparisons be equal to  

    Cworst(n) = (n+1) + n + (n-1) +...+ 3 =  (n+1) (n+2)   

                                                                         2 

      According to Master Theorem the total number of key comparisons in the 

worst case = ϴ(n2). 

 

      The average number of key comparisons made by the Quick Sort as a random 

by ordered array of size ‘n’. Assuming that the partition split can happen in each 

position S(0 ≤ S ≤ n-1) with the same probability 1/n, we get the following 

recurrence relation: 
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Binary Search 
         

              Binary Search is a remarkably efficient algorithm for searching in a sorted 

array. It works by comparing a search key ‘k’ with the array’s middle element 

A[m].  If they match, the algorithm stops; otherwise, the same operation is repeated 

recursively for the first half of the array if k < A[m] and for the second half if  

k > A[m]: 

                 A[0]. . .A[m-1]   A[m]   A[m+1]. . .A[n-1] 

                                              ↓ 

                Search here if        k          search here if           

                    k < A[m]                           k > A[m] 

Example: 

 As an example, let us apply binary search to searching for k = 70 in the array 

 

3 14 27 31 39 42 55 70 74 81 85 93 98 

 

 The iterations of the algorithm are given in the following table: 

   

 Index:              0    1      2      3      4      5      6      7       8      9      10    11    12 

 Value: 

 

Iteration 1         l                                               m                                              r  

                

Iteration 2                                                 

                                                                                 

                                                                                  l              m                     r 

iteration 3                                                               

         

                                                                             l, m      r              ( here k = m)  

    

      Though binary search is clearly based on a recursive idea, it can be easily 

implemented as a non recursive algorithm too. 

  

 

 

 

 

 

 

 

 

 

 

3 14 27 31 39 42 55 70 74 81 85 93 98 

70 74 81 85 93 98 

70 74 
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Algorithm for Binary Search: 

 

   ALGORITHM BinarySearch( A[0..n-1], K) 

    // Implements non-recursive binary search 

    //  Input: An array A[0..n-1] sorted in ascending order and a search key K 

    // Output: An index of the array’s element that is equal to K or -1 if there is  

   //                no such element 

    l  ← 0; r ← n-1 

    while  l ≤ r do 

           m ← [(l + r) / 2] 

           if  K = A[m] return m 

           else if  K < A[m]   r ← m-1 

           else  l ← m+1 

     return  -1 

 

 Recurrence Relation: 

       The standard way to analyse the efficiency of binary search is to count the 

number of times the search key is compared with an element of the array. 

         Let us find the number of key comparisons in the worst case Cworst(n). 

The worst case inputs include all arrays that do not contain a given search key. 

Since after one comparison the algorithm faces the same situation but for an array 

half the size, we get the following recurrence relation for Cworst(n): 

 

         Cworst(n) = Cworst([n/2]) + 1  for n > 1.     Cworst( 1) = 1. 

 

         According to Master Theorem, the worst case efficiency of binary search is 

ϴ( log n). 

 

        The average number of key comparisons made by binary search is only 

slightly smaller than that in the worst case: 

          

                                 Cavg(n) ~  log2n 
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Binary Tree Traversals and Related Properties 
       

Binary Tree:  A Binary Tree T is defined as a finite set of nodes that is either 

empty or consists of a root and two disjoint binary trees TL and TR called 

respectively, the left and right subtree of the root. 

 

                    
 

         Many problems about binary trees can be solved by applying the divide-and-

conquer technique. For example, let us consider a recursive algorithm for 

computing the height of a binary tree. The height is defined as the length of the 

longest path from the root to a leaf. Hence, it can be computed as the maximum of 

the heights of the root’s left and right subtrees plus 1. Also note that it is convenient 

to define the height of the empty tree as −1. Thus, we have the following recursive 

algorithm. 

  

ALGORITHM     Height(T ) 

 //Computes recursively the height of a binary tree //Input: A binary tree T 

 //Output: The height of T  

  if T = ∅  return −1 

  else return max{Height(Tlef t ), Height(Tright )} + 1 

 

Tree Traversal techniques: 

   The most important divide-and-conquer algorithms for binary trees are the 

three classic traversals: preorder, inorder, and postorder. All three traversals visit 

nodes of a binary tree recursively, i.e., by visiting the tree’s root and its left and 

right subtrees. They differ only by the timing of the root’s visit: 
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 In the preorder traversal, the root is visited before the left and right subtrees are 

visited (in that order). 

 In the inorder traversal, the root is visited after visiting its left subtree but before 

visiting the right subtree. 

 In the postorder traversal, the root is visited after visiting the left and right subtrees 

(in that order). 

 

 

  

   The number of comparisons made to compute the maximum of two numbers 

and the number of additions A(n(T )) made by the algorithm are the same. We have 

the following recurrence relation for A(n(T )): 

               A(n(T )) = A(n(Tlef t )) + A(n(Tright )) + 1  for n(T ) > 0, 

                     A(0) = 0. 
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Decrease and Conquer 
 

        The decrease-and-conquer technique is based on exploiting the relationship 

between a solution to a given instance of a problem and a solution to its smaller 

instance. Once such a relationship is established, it can be exploited either top 

down (recursively) or bottom up (without recursion).  

 

There are three major variations of decrease-and-conquer: 

     1. Decrease by a constant. 

     2. Decrease by a constant factor. 

     3. Variable size decrease. 

 

Decrease by a Constant:  

            In the decrease-by-a-constant variation, the size of an instance is reduced 

by the same constant on each iteration of the algorithm. This constant is equal to 

one. (Eg: Insertion Sort). 

 Consider, an example of the exponentiation problem of computing an  for positive 

integer exponents.   
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Decrease by a Constant factor: 

        The decrease-by-a-constant-factor technique suggests reducing a problem 

instance by the same constant factor on each iteration of the algorithm. In most 

applications, this constant factor is equal to two. (Eg: Binary Search). 

 

 
       For an example, let us revisit the exponentiation problem. If the instance of 

size n is to compute an, the instance of half its size is to compute an/2, with the 

obvious relationship between the two: an = (an/2)2. 

    To summarize, we have the following formula: 

 
 

Variable size decrease: 

        In the variable-size-decrease variety of decrease-and-conquer, the size-

reduction pattern varies from one iteration of an algorithm to another. 

        Eu-clid’s algorithm for computing the greatest common divisor provides a 

good example of such a situation. (eg: GCD) 

               gcd (m,n) = gcd (n, m mod n). 
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Insertion Sort 
 

          Insertion Sort is an application of the decrease-by-one technique to sorting 

an array A[0..n − 1]. Following the technique’s idea, we assume that the smaller 

problem of sorting the array A[0..n − 2] has already been solved to give us a sorted 

array of size n − 1: A[0] ≤ . . . ≤ A[n − 2].  We need is to find an appropriate 

position for A[n − 1] among the sorted elements and insert it there. This is usually 

done by scanning the sorted subarray from right to left until the first element 

smaller than or equal to A[n − 1] is encountered to insert A[n − 1] right after that 

element. The resulting algorithm is called straight insertion sort or 

simply insertion sort. 

 

ALGORITHM   InsertionSort(A[0..n − 1]) 

 //Sorts a given array by insertion sort 

 //Input: An array A[0..n − 1] of n orderable elements 

 //Output: Array A[0..n − 1] sorted in nondecreasing order  

 for i ← 1 to n − 1 do 

       v ← A[i]  

       j ← i − 1 

      while j ≥ 0 and A[j ] > v do 

           A[j + 1] ← A[j ] 

           j ← j − 1 

      A[j + 1] ← v 

          Though insertion sort is clearly based on a recursive idea, it is more efficient 

to implement this algorithm bottom up, i.e., iteratively. As shown in Figure 4.3, 

starting with A[1] and ending with A[n − 1], A[i] is inserted in its appropriate place 

among the first i elements of the array that have been already sorted 
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Example:  

 
       The basic operation of the algorithm is the key comparison A[j ] > v. The 

number of key comparisons in this algorithm obviously depends on the nature of 

the input. 

       In the worst case, A[j ] > v is executed the largest number of times, i.e., for 

every j = i − 1, . . . , 0. Since v = A[i], it happens if and only if A[j ] > A[i] 

for j = i − 1, . . . , 0. In other words, the worst-case input is an array of strictly 

decreasing values. The number of key comparisons for such an input is 

 

       In the best case, the comparison A[j ] > v is executed only once on every 

iteration of the outer loop. It happens if and only if A[i − 1] ≤ A[i] for every i = 1, . 

. . , n − 1, i.e., if the input array is already sorted in nondecreasing order. 

 
      On randomly ordered arrays, insertion sort makes on average half as many 

comparisons as on decreasing arrays, i.e., 

 

 

 

 

 

 



V SARALA, MCA DEPARTMENT, DNR COLLEGE Page 55 
 

 

Depth-First search 
 

          Depth-first search starts a graph’s traversal at an arbitrary vertex by marking 

it as visited. On each iteration, the algorithm proceeds to an unvisited vertex that is 

adjacent to the one it is currently in. As a practical matter, which of the adjacent 

unvisited candidates is chosen is dictated by the data structure (Stack) representing 

the graph. 

           This process continues until a dead end-a vertex with no adjacent unvisited 

vertices-is encountered. At a dead end, the algorithm backs up one edge to the 

vertex it came from and tries to continue visiting unvisited vertices from there. The 

algorithm eventually halts after backing up to the starting vertex, with the latter 

being a dead end. By then, all the vertices in the same connected component as the 

starting vertex have been visited. If unvisited vertices still remain, the depth-first 

search must be restarted at any one of them. 

 

 
 

       It is also very useful to accompany a depth-first search traversal by constructing 

the so-called depth-first search forest. We push a vertex onto the stack when the 

vertex is reached for the first time (i.e., the visit of the vertex starts), and we pop a 

vertex off the stack when it becomes a dead end (i.e., the visit of the vertex ends). 
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Pseudocode of the depth-first search 

 

ALGORITHM   DFS(G)  

 //Implements a depth-first search traversal of a given graph 

 //Input: Graph G = (V, E) 

 //Output: Graph G with its vertices marked with consecutive integers  

//               in the order they've been first encountered by the DFS traversal 

mark each vertex in V with 0 as a mark of being "unvisited"  

count ←  0 

for each vertex v in V do 

    if v is marked with 0  

        dfs(v)  

dfs(v) 

 //visits recursively all the unvisited vertices connected to vertex v by a path 

 //and numbers them in the order they are encountered  

//via global variable count 

 count  ←  count + 1;    mark v with count 

 for each vertex w in V adjacent to v do 

     if w is marked with 0 

         dfs(w) 

 

 

       Thus, for the adjacency matrix representation, the traversal's time is in ϴ(|V|2), 

and for the adjacency list representation, it is in ϴ(|V| + |E|) where |V| and |E| are the 

number of the graph's vertices and edges, respectively. 

 

Important elementary applications of DFS include checking connectivity and 

checking acyclicity of a graph. 

 

Connectivity: If all the nodes in a tree are traversed from the starting vertex and 

checks after the algorithm halts, whether all the graph vertices are visited or not. If 

all are visited then the graph is said to be having the property of connectivity. 

 

Articulation point: A vertex of a connected graph is said to be it’s articulation 

point if any edge in the graph is removed then the graph is breaks into disjoint 

pieces. 
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Breadth-First Search 
 

         Breadth-First Search algorithm proceeds in a concentric manner by visiting 

first all the vertices that are adjacent to a starting vertex, then all unvisited vertices 

two edges apart from it, and so on, until all the vertices in the same connected 

component as the starting vertex are visited. If there still remain unvisited vertices, 

the algorithm has to be restarted at an arbitrary vertex of another connected 

component of the graph. 

 

        It is convenient to use a queue to trace the operation of breadth-first search. 

The queue is initialized with the traversal's starting vertex, which is marked as 

visited. On each iteration, the algorithm identifies all unvisited vertices that are 

adjacent to the front vertex, marks them as visited, and adds them to the queue; after 

that, the front vertex is removed from the queue. 

 

 

 
 

         Similarly to a DFS traversal, it is useful to accompany a BFS traversal by 

constructing the so-called breadth-first search forest. The traversal's starting vertex 

serves as the root of the first tree in such a forest. Whenever a new unvisited vertex 

is reached for the first time, the vertex is attached as a child to the vertex it is being 

reached from with an edge called a tree edge. If an edge leading to a previously 

visited vertex other than its immediate is encountered, the edge is noted as a cross 

edge. 
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Pseudocode of the breadth-first search 

 

ALGORITHM BFS(G) 

     //Implements a breadth-first search traversal of a given graph 

    //Input: Graph G = (V, E) 

    //Output: Graph G with its vertices marked with consecutive integers 

    //in the order they have been visited by the BFS traversal 

    mark each vertex in V with 0 as a mark of being "unvisited" 

    count +- 0 

    for each vertex v in V do 

          if v is marked with 0 

               bfs(v) 

    bfs(v) 

    //visits all the unvisited vertices connected to vertex v by a path 

    //and assigns them the numbers in the order they are visited 

    //via global variable count 

    count +-count + 1; mark v with count and initialize a queue with v 

    while the queue is not empty do 

          for each vertex w in V adjacent to the front vertex do 

               if w is marked with 0 

                    count +-- count + 1; mark w with count 

                    add w to the queue 

         remove the front vertex from the queue 

 

        Breadth-first search has the same efficiency as depth-first search: it is in 

 ϴ(|V| 2) for the adjacency matrix representation and in ϴ(|V| + |E|) for the 

adjacency list representation. 

 

Differences between DFS and BFS: 
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Topological Sorting 

        A directed graph, or digraph for short, is a graph with directions specified for 

all its edges. There are only two notable differences between undirected and 

directed graphs in representing them:  

      (1) The adjacency matrix of a directed graph does not have to be symmetric; 

       (2) An edge in a directed graph has just one (not two) corresponding nodes in 

            the digraph’s adjacency lists. 

 
        Depth-first search and breadth-first search are principal traversal algorithms 

for traversing digraphs as well, but the structure of corresponding forests can be 

more complex than for undirected graphs.  

        For example, a set of five required courses {C1, C2, C3, C4, C5} a part-time 

student has to take in some degree program. The courses can be taken in any order 

as long as the following course prerequisites are met: C1 and C2 have no 

prerequisites, C3 requires C1 and C2, C4 requires C3, and C5 requires C3 and C4. 

The student can take only one course per term. In which order should the student 

take the courses? 

         There are two efficient algorithms that both verify whether a digraph is a dag 

and, if it is, produce an ordering of vertices that solves the topological sorting 

problem. 

 

  The first algorithm is a simple application of depth-first search: perform a 

DFS traversal and note the order in which vertices become dead-ends (i.e., 

popped off the traversal stack). 
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   The second algorithm is based on a direct implementation of the decrease-

(by one)-and-conquer technique: repeatedly, identify in a remaining digraph 

a source, which is a vertex with no incoming edges, and delete it along with 

all the edges outgoing from it. 
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Decrease-by-a-Constant-Factor Algorithms 
     

         Decrease-by-a-constant-factor is the second major variety of decrease-and-

conquer.  Decrease by a constant factor algorithms usually run in logarithmic time, 

and being very efficient, do not happen often, a reduction by a factor other than 

two is especially rare. 

The problems that come under this concept are:  

1. Binary Search 

2. Fake-coin Problem 

3. Josephus Problem 

 

Binary Search: (See Divide-and-Conquer chapter) 

 

Fake-Coin Problem:    

 

             It is  one of the best method decrease-by-a-constant-factor strategy. Among  

‘n’ identically looking coins, one is fake. With a balance scale, we can compare any 

two sets of coins. That is, by tipping to the left, to the right, or staying even. The 

balance scale will turn according to the weights placed on either sides of the balance 

scale. The fake-coin is one which is showing either lighter or heavier than genuine 

one. We always assume a lighter weighted by pile has a fake-coin. 

 

              The most natural idea for solving this problem is to divide n coins into two 

piles of  (n/2) coins each, leaving one extra coin apart if n is odd, and put the two 

piles on the scale. If the piles weigh the same, the coin put aside must be fake; 

otherwise, we can proceed in the same manner with the lighter pile, which must 

be the one with the fake coin.  

   The recurrence relation for number of weighing: 

           

                    W(n) = W(n/2) + 1 for n > 1, 

                    W(1) = 0                for n = 1. 

 

    The order of growth is similar to the binary search, that is, 

                      W(n) = log2 n. 

 

       But, the algorithm may not be efficient in all the cases. So, it will be better 

dividing the coin into 3 piles instead of 2 piles. The order of growth in this case is  

                       W(n) = log3 n. 
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Transform-and Conquer 
 

          We call this general technique transform-and-conquer because these 

methods work as two-stage procedures.  

          1. Transformation Stage 

          2. Conquering Stage 

         First, in the transformation stage, the problem’s instance is modified to be, for 

one reason or another, more amenable to solution. Then, in the second or 

conquering stage, it is solved.  

 

        There are three major variations: 

 

1. Transformation to a simpler or more convenient instance of the same problem. 

    This is called  ‘instance simplification’. 

 

2. Transformation to a different representation of the same instance. This is 

     called ‘representation change’. 

 

3. Transformation to an instance of a different problem for which an algorithm is 

    already available. This is called  ‘problem reduction’. 
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 Balanced Search Trees 

 
Binary Search Tree:  Binary search tree is one of the principal data structures for 

implementing dictionaries. It is a binary tree whose nodes contain elements of a set 

of orderable items, one element per node, so that all elements in the left subtree are 

smaller than the element in the subtree’s root, and all the elements in the right 

subtree are greater than it. 

       Note that this transformation from a set to a binary search tree is an example of 

the representation-change technique.  

      We gain in the time efficiency of searching, insertion, and deletion, which are 

all in  (log n), but only in the av-erage case. In the worst case, these operations are 

in  (n) because the tree can degenerate into a severely unbalanced one with its 

height equal to n − 1. 

       Computer scientists have expended a lot of effort in trying to find a structure 

that preserves the good properties of the classical binary search tree. They have 

come up with two approaches. 

1. The first approach is of the instance-simplification variety: an unbalanced 

binary search tree is transformed into a balanced one. Because of this, such trees are 

called self-balancing.  An AVL tree requires the difference between the heights of 

the left and right subtrees of every node never exceed 1.  

2. The second approach is of the representation-change variety: allow more than 

one element in a node of a search tree. Specific cases of such trees are 2-3 trees, 2-

3-4 trees, and more general and important B-trees. 

 

 

AVL Trees 
 

        AVL trees were invented in 1962 by two Russian scientists, G. M. Adelson-

Velsky and E. M. Landis [Ade62], after whom this data structure is named. 
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DEFINITION:   

 

              An AVL tree is a binary search tree in which the balance factor of every 

node, which is defined as the difference between the heights of the node’s left and 

right subtrees, is either 0 or +1 or −1. (The height of the empty tree is defined as −1. 

Of course, the balance factor can also be computed as the difference between the 

numbers of levels rather than the height difference of the node’s left and right 

subtrees.) 

 

           If an insertion of a new node makes an AVL tree unbalanced, we transform 

the tree by a rotation. A rotation in an AVL tree is a local transformation of its 

subtree rooted at a node whose balance has become either +2 or −2. If there are 

several such nodes, we rotate the tree rooted at the unbalanced node that is the 

closest to the newly inserted leaf. There are only four types of rotations; in fact, two 

of them are mirror images of the other two. In their simplest form, the four rotations 

are shown in Figure.  

          

          The first rotation type is called the single right rotation, or R-rotation. (Imag-

ine rotating the edge connecting the root and its left child in the binary tree in Figure 

(a) to the right).  This rotation is performed after a new key is inserted into the left 

subtree of the left child of a tree whose root had the balance of +1 before the 

insertion. 

        The symmetric single left rotation, or L-rotation, is the mirror image of the 

single R-rotation. It is performed after a new key is inserted into the right subtree of 

the right child of a tree whose root had the balance of −1 before the insertion.  
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        The second rotation type is called the double left-right rotation (LR-rotation). 

It is, in fact, a combination of two rotations: we perform the L-rotation of the left 

subtree of root r followed by the R-rotation of the new tree rooted at r (Figure 6.5). 

It is performed after a new key is inserted into the right subtree of the left child of a 

tree whose root had the balance of +1 before the        insertion. 

        The double right-left rotation (RL-rotation) is the mirror image of the double 

LR-rotation.  

Construction of an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertion. 

The parenthesized number of a rotation’s abbreviation indicates the root of the tree 

being reorganized. 
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2-3 Trees 

 

         The second idea of balancing a search tree is to allow more than one key in the 

same node of such a tree. 
 

 A 2-3 tree is a tree that can have nodes of two kinds: 2-nodes and 3-nodes. 

       A 2-node contains a single key K and has two children: the left subtree keys are 

less than K, and the right subtree keys are greater than K.  

      A 3-node contains two ordered keys K1 and K2 (K1 < K2) and has three children. 

The leftmost subtree with keys less than K1, the middle subtree with keys 

between K1 and K2, and the rightmost subtree with keys greater than K2. 

 

 

 
 

       The last requirement of the 2-3 tree is that all its leaves must be on the same 

level. i.e, A 2-3 tree is always perfectly height-balanced. 

 

         Searching for a given key K in a 2-3 tree is quite straightforward. We start at 

the root. If the root is a 2-node, we act as if it were a binary search tree. If the root is 

a 3-node, we know after no more than two key comparisons whether the search can 

be stopped (if K is equal to one of the root’s keys) or in which of the root’s three 

subtrees it needs to be continued. 

 

        Inserting a new key in a 2-3 tree is done as follows. We always insert a new 

key K in a leaf, except for the empty tree. The appropriate leaf is found by 

performing a search for K. If the leaf is a 2-node, we insert K there as either the first 

or the second key, depending on whether K is smaller or larger than the node’s old 

key. If the leaf is a 3-node, we split the leaf in two: the smallest of the three keys 

(two old ones and the new key) is put in the first leaf, the largest key is put in the 

second leaf, and the middle key is promoted to the old leaf’s parent. 
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       As for any search tree, the efficiency of the dictionary operations depends on 

the tree’s height. So let us first find an upper bound for it. A 2-3 tree of 

height h with the smallest number of keys is a full tree of 2-nodes. Therefore, for 

any 2-3 tree of height h with n nodes, we get the inequality 

 

On the other hand, a 2-3 tree of height h with the largest number of keys is a full 

tree of 3-nodes, each with two keys and three children. Therefore, for any 2-3 tree 

with n nodes, 

         n ≤ 2 . 1 + 2 . 3 + . . . + 2 . 3h = 2(1 + 3 + . . . + 3h) = 3h+1 – 1 

and hence 

                    h ≥ log3(n + 1) − 1. 

 These lower and upper bounds on height h, 

                    log3(n + 1) − 1 ≤ h ≤ log2(n + 1) − 1, 

imply that the time efficiencies of searching, insertion, and deletion are all 

in  (log n) in both the worst and average case. 
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Heaps and Heapsort 

Heap is a partially ordered data structure that is especially suitable for implementing 

priority queues. A priority queue is a multiset of items with an orderable 

characteristic called an item’s priority. 

 

DEFINITION:  A heap can be defined as a binary tree with keys assigned to 

its nodes, one key per node, provided the following two conditions are met: 

1. The tree’s shape property: The binary tree is essentially complete,  i.e., all its 

levels are full except possibly the last level, where only some rightmost leaves may 

be missing. 

2. The parental dominance or heap property: The key in each node is greater 

than or equal to the keys in its children. (This condition is considered auto-matically 

satisfied for all leaves.) 

 

Properties of Heaps: 

 The root of a heap always contains its largest element. 

 A node of a heap considered with all its descendants is also a heap. 

 There exists exactly one essentially complete binary tree with n nodes. Its 

height  is equal to log2 n . 

 

 

 



V SARALA, MCA DEPARTMENT, DNR COLLEGE Page 70 
 

 The parental node keys will be in the first n/2 positions of the array, while the 

leaf keys will occupy the last n/2 positions. 

 The children of a key in the array’s parental position i (1 ≤ i ≤ n/2 ) will be in 

positions 2i and 2i + 1, and, correspondingly, the parent of a key in position i 

(2 ≤ i ≤ n) will be in position i/2 . 

  

Heap Sort 

Heapsort is an interesting sorting algorithm discovered by J. W. J. Williams 

[Wil64]. This is a two-stage algorithm that works as follows. 

 Stage 1 (heap construction): Construct a heap for a given array.  

 Stage 2 (maximum deletions): Apply the root-deletion operation n − 1 times to the 

remaining heap. 

 

Stage 1: Bottom-up heap construction algorithm: 

 The list is 2, 9, 7, 6, 5, 8. 
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ALGORITHM     HeapBottomUp(H [1..n]) 

    //Constructs a heap from elements of a given array 

    // by the bottom-up algorithm 

    //Input: An array H [1..n] of orderable items  

    //Output: A heap H [1..n] 

    for i ← [n/2] downto 1 do 

         k ← i;     v ← H [k] 

        heap ← false 

        while not heap and 2 ∗ k ≤ n do   

               j ← 2 ∗ k 

              if j < n //there are two children 

                   if H [j ] < H [j + 1]    j ← j + 1 

              if v ≥ H [j ] 

                    heap ← true 

              else H [k] ← H [j ];      k ← j  

         H [k] ← v 

Efficiency in the worst case: Assume that n = 2k − 1 so that a heap’s tree is full, 

i.e., the largest possible number of nodes occurs on each level. Let h be the height 

of the tree. i.e,  h = log2 n.  Each key on level i of the tree will travel to the leaf 

level h in the worst case.  

 

Stage 2: Maximum Key Deletion from a heap: 

Step 1 Exchange the root’s key with the last key K of the heap.  

Step 2 Decrease the heap’s size by 1. 

Step 3 “Heapify” the smaller tree by sifting K down the tree exactly in the same 

way we did it in the bottom-up heap construction algorithm. That is, verify the 

parental dominance for K: if it holds, we are done; if not, swap K with the larger of 

its children and repeat this operation until the parental dominance condition holds 

for K in its new position. 
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Efficiency of second stage: The efficiency of deletion is determined by the number 

of key comparisons needed to “heapify” the tree after the swap has been made and 

the size of the tree is decreased by 1. Time efficiency of deletion is in O(log n). 

 

 

 



V SARALA, MCA DEPARTMENT, DNR COLLEGE Page 73 
 

Problem Reduction 

        If you need to solve a problem, reduce it ti another problem that you know how 

to solve. This strategy is called ‘Problem Reduction’. 

To solve an instance of problem A: 

 Transform the instance of problem A into an instance of problem B 

 Solve the instance of problem B 

 Transform the solution to problem B into a solution of problem A 

 

Computing the Least Common Multiple 

         The least common multiple of two positive integers m and n, denoted  lcm(m, 

n), is defined as the smallest integer that is divisible by both m and n.  

        Given the prime factorizations of m and n, compute the product of all the 

common prime factors of m and n, all the prime factors of m that are not in n, and 

all the prime factors of n that are not in m. For example, 

 

          A much more efficient algorithm for computing the least common multiple 

can be devised by using problem reduction. After all, there is a very efficient 

algorithm (Euclid’s algorithm) for finding the greatest common divisor, which is a 

product of all the common prime factors of m and n. It is not difficult to see that the 

product of lcm(m, n) and gcd(m, n) includes every factor of m and n exactly once 

and hence is simply equal to the product of m and n. This observation leads to the 

formula 

 

where gcd(m, n) can be computed very efficiently by Euclid’s algorithm. 

 

************** 
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UNIT-III 

Dynamic Programming 

         Dynamic Programming is one of the algorithm design technique that can be 

used to solve the problems where the solution of the problem will be given as result 

of sequence of decisions. 

         It is invented by a prominent U.S. mathematician, Richard Bellman, in the 

1950s as a general method for optimizing multistage decision processes. 

         Dynamic Programming is a technique for solving problems with overlapping 

subproblems. Typically, these subproblems arise from a recurrence relating a 

solution to a given problem with solutions to its smaller subproblems of the same 

type. 

Example:  The Fibonacci numbers are the elements of the sequence 

                                 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... , 

                   which can be defined by the simple recurrence 

F(n) = F(n- 1) + F(n- 2) for n )> 2  

                  and two initial conditions 

                                      F(0) = 0,  F(1) = 1.  

Dynamic programming design involves 4 major steps.  

1) Characterize the structure of optimal solution.  

2) Recursively define the value of an optimal solution.  

3) Compute the value of an optimum solution in a bottom up fashion.  

4) Construct an optimum solution from computed information. 

Applications of Dynamic Programming Approach 

 Matrix Chain Multiplication 

 Longest Common Subsequence 

 Travelling Salesman Problem 

 Knapsack Problem 

 Optimal Binary search Trees 
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Warshall’s and Floyd’s Algorithm 

             Warshall's algorithm for computing the transitive closure of a directed 

graph and Floyd's algorithm for the all-pairs shortest-paths problem. 

Warshall’s Algorithm 

        The adjacency matrix A= {ai j} of a directed graph is the boolean matrix 

that has 1 in its ith row and jth column if and only if there is a directed edge from 

the ith vertex to the jth vertex. We may also be interested in a matrix containing 

the information about the existence of directed paths of arbitrary lengths between 

vertices of a given graph. 

DEFINITION:  The ‘transitive closure’ of a directed graph with n vertices can be 

defined as the n-by-n boolean matrix T = {ti j}, in which the element in the ith row (1 

≤ i ≤  n) and the jth column (1 ≤ j  ≤ n) is 1 if there exists a nontrivial directed path 

from the ith vertex to the jth vertex; otherwise, ti j is 0. 

 

Example: 

 
 

          We can generate the transitive closure of a digraph with the help of depth-first 

search or breadth-first search. Since, by using these methods which traverses the 

same digraph several times. So, we should go for the better algorithm. i.e, called as 

Warshall’s algorithm. 

        The transitive closure of a given digraph with n vertices through a series of  

n x n boolean matrices: 

 

       The element ri j
(k) in the ith row and jth column of matrix R(k) (k = 0, 1, ... , n) is 

equal to 1 iff there exists a directed path from the ith vertex to the jth vertex with each 

intermediate vertex, if any, numbered not higher than ‘k’. 
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          The series starts with R(0),  which does not allow any intermediate vertices in 

its paths; hence, R(0)  is the adjacency matrix of the digraph. 

          R(1) contains the information about paths that can given the first vertex as the 

intermediate vertex. In the same manner this process will be continued for R(n) 

vertices. 

          vn is a list of intermediate vertices not higher tha  k, vj. 

 

 
 

Pseudocode of Warshall’s Algorithm: 

 

 
          The adjacency matrix  R(0)  is   
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          We have just proved is that if ri j
(k) = 1, then either ri j

(k-1) = 1 or both 

ri k
(k-1) = 1 and rk j

(k-1) = 1. It is easy to see that the converse of this assertion is also 

true. Thus, we have the following formula for generating the elements of matrix 

R(k) from the elements of matrix R(k-1): 

 

 

 
 

 
 

The time complexity of  Warshall’s algorithm is O(n2). 
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Floyd’s Algorithm 
 

           The weighted connected graph (undirected or directed), the all-pairs shortest 

paths problem asks to find the distances from each vertex to all other vertices. It is 

convenient to record the lengths of shortest paths in an n x n matrix D called the 

distance matrix. 

 

Weighted matrix: This s a matrix without consideration of any intermediatory 

nodes.  

 

Distance matrix:  The element di j in the ith row and the jth column of this matrix 

indicates the length of the shortest path from the ith vertex to the jth vertex (1 ≤ i, j ≤ 

n ). 

 

Example: 

 
 

        We can generate the distance matrix with an algorithm that is very similar 

to Warshall's algorithm. It is called Floyd's algorithm. 

        Floyd's algorithm computes the distance matrix of a weighted graph with ‘n’ 

vertices through a series of n x n matrices: 

 
        Each of these matrices contains the lengths of shortest paths with certain 

constraints on the paths considered for the matrix in question. Specifically, the 

element di j
(k) in the ith row and the jth column of matrix D(k) (k = 0, 1, ... , n) is equal 

to the length of the shortest path among all paths from the ith vertex to the jth vertex 

with each intermediate vertex, if any, numbered not higher than ‘k’. 

 

          Here, D(0) is the weight matrix of the graph. The last matrix in the series, D(n) 

contains the lengths of the shortest paths among all paths. 
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The idea of Floyd’s Algorithm: 

 

 
 

The shortest paths in both subsets leads to the following recurrence: 

 

 

 

The pseudocode of Floyd's algorithm: 

 

 
 

           The time efficiency of Floyd's algorithm is cubic-as is the time efficiency of  

Warshall's algorithm. 
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Optimal Binary Search Trees 
      
       A Binary Search Tree ‘T’ is a Binary tree in which each node in the tree 

contains an identifier. 

 All the identifiers in the left sub tree are less than root node ‘T’. 

 All the identifiers in the right sub tree are greater than the identifier in the 

root node ‘T’. 

 To determine an identifier ‘x’ is represented in Binary search tree first ‘x’ is 

compared with root node. If ‘x’ is less than identifier of the root then the 

search continues in the left sub tree, Otherwise in the right sub tree. 

 If x = identifier of the root node then the search terminates completely. 
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         If probabilities of searching for elements of a set are known an Optimal Binary 

Search tree for which the average number of comparisons in a search is the smallest 

possible i.e., to minimizing the average number of comparisons in a successful 

search. 

 

         For example, consider four keys A, B, C, and D to be searched for with 

probabilities  0.1, 0.2, 0.4, and 0.3, respectively. 

 

 
 

          These are two out of 14 possible binary search trees containing these keys. The 

average number of comparisons in a successful search in the first of these trees is 

0.1·1 + 0.2·2 + 0.4-3 + 0.3-4 = 2.9, while for the second one it is 0.1·2 + 0.2·1 + 

0.4-2 + 0.3-3 = 2.1. Neither of these two trees is, in fact, optimal. 

    

        Let a1,…..an  be distinct keys ordered from the smallest to the largest and let  p1 

, ... , pn  be the probabilities of searching for them. Let C[i, j] be the smallest average 

number of comparisons made in a successful search in a binary search tree Ti
j  made 

up of keys ai, ... , aj, where i, j are some integer indices, 1≤ i ≤ j≤ n. 

 

         To derive a recurrence underlying the dynamic programming algorithm, we 

need to  consider all possible ways to choose a root ak among the keys a,, ... , aj. 

For such a binary search tree, the root contains key ak,,  the left subtreer  Ti k-1 

contains keys ai,... , ak-1 optimally arranged, and the right subtree Tj
k+1  contains 

keys ak+1, ..., aj also optimally arranged. 
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        If we count tree levels starting with 1, the following recurrence relation is 

obtained: 

 
     We assume in formula that C[i, i- 1] = 0 for 1 ≤ i ≤ n + 1, which can be 

interpreted as the number of comparisons in the empty tree. Note that this formula 

implies that 

 
as it should be for a one-node binary search tree containing ai. 

 

Pseudocode of the dynamic programming algorithm 

 

ALGORITHM OptimalBST(P[l..n]) 

//Finds an optimal binary search tree by dynamic programming 

//Input: An array P[l..n] of search probabilities for a sorted list of n keys 

//Output: Average number of comparisons in successful searches in the 

//              optimal BST and table R of subtrees' roots in the optimal BST 

       

     for i ← 1 to n do 

              C[i, i -1] ← 0 

              C[i, i] ← P[i] 

              R[i, i] ← i 

     C[n + 1, n] ← 0 

     for d ← 1 to n - 1 do       //diagonal count 

            for i ← 1 to n - d do 

                  j ← i + d 

                 minval ← ∞ 

                 for k ← i to j do 

                       if C[i, k -1] + C[k + 1, j] < minval 

                                minval ← C[i, k- 1] + C[k + 1, j];  kmin ← k 

                R[i, j] ← kmin 

                sum ← P[i];  

                for s ← i + 1 to j do  

                     sum ← sum+ P[s] 

                     C[i, j] ← minval + sum 

return C[1, n ], R 
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EXAMPLE:   Let us illustrate the algorithm by applying it to the four-key set we 

used at the beginning of this section:  

 

                    

                     key                 A        B         C        D 

                     probability    0.1      0.2       0.4      0.3 

 

The initial tables look like this: 

 

 
   

         Thus, out of two possible binary trees containing the first two keys, A and B, 

the root of the optimal tree has index 2 (i.e., it contains B), and the average number 

of comparisons in a successful search in this tree is 0.4. 

 

 

 

The process continues, then the final tables are: 

 
         Thus, the average number of key comparisons in the optimal tree is equal to 

1.7. Since R[1, 4] = 3, the root of the optimal tree contains the third key, i.e., C. Its 

left subtree is made up of keys A and B, and its right subtree contains just key D. 
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        To find the specific structure of these subtrees, we find first their roots by 

consulting the root table again as follows. Since R[1, 2] = 2, the root of the optimal 

tree containing A and B is B, with A being its left child (R[1, 1] = 1). Since R[4, 4] 

= 4, the root of this one-node optimal tree is its only key D. 

 

 
 

         The time complexity of this algorithm is cubic O(n3). The algorithm’s space 

efficiency is quadratic O(n2). 

 

Table of the dynamic programing algorithm for constructing an optimal binary 

search tree 
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Knapsack Problem and Memory Functions 
Knapsack Problem 
 

         Knapsack problem is another designing technique of the dynamic 

programming. Here with the given ‘n’ items of known weights w1, ... , wn and 

values v1, ... , vn and a knapsack of capacity W, find the most valuable subset of the 

items that fit into the knapsack. The weights and the knapsack's capacity are 

positive integers. 

 

        Let us consider an instance defined by the first ‘i’ items, 1 ≤ i ≤ n, with weights 

w1, ... , wi, values v1, ... , vi, and knapsack capacity ‘j’, 1 ≤ j ≤ W. Let  

V[i, j] be the value of an optimal solution to this instance. We can divide all the 

subsets of the first ‘i’ items that fit the knapsack of capacity ‘j’ into two categories: 

 

1. The subsets without  including  the ith item, then the value of an optimal subset 

     is, V[i - 1, j]. 

2  The subsets with including the ith item, then the optimal subset is made up of   

     the first (i – 1) items that fit into the knapsack of capacity  j- wi , Then the  

     value of such an optimal subset is vi + V[i - 1, j - wi]. 

     

Then the following recurrence relation is used to find out the values: 

 

 
For the convenience let us defined the initial conditions as follows: 

 

 
 

Table for solve the Knapsack problem by dynamic programing 

 

 
 

       Our goal is to find V[n, w], the maximal value of a subset of then given items 

that fit into the knapsack of capacity W, and an optimal subset itself. 
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Example:  

 Let us consider the instance given by the following data: 

 
 

      Apply the recurrence relation of the Knapsack inorder to fill the items in to the 

Knapsack . 

 
 

 
 

         The maximum value is V[4,5] = $37. Here we are going to use the back 

tracking computations. Since V[4,5] ≠ V[3,5] it means that by including the item 4, 

we are getting the optimal solution along with an optimal subset for filling the 

remaining knapsack which is the capacity of 5 – 2 = 3. 

         Since V[3,3]  ≠ V[2,3], the item 3 is not a part of an optimal subset. 

         Since V[2,3]  ≠ V[1,3], item 2 is a part of optimal solution.  

         Similarly V[1,2]  ≠  V[0,2] item 1 is the final part of optimal solution  

{item1, item2, item4}. 

        

The time efficiency and space efficiency of this algorithm are both in ϴ (n W). The 

time needed to find the composition of an optimal solution is in O(n + W). 
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Memory Functions 
 

          The dynamic programing deals with problems whose solutions satisfy a 

recurrence relation with overlapping subproblems. 

 

          The Memory Functions technique seeks to combine strengths of the top-down 

and bottom-up approaches to solving problems with overlapping sub problems. It 

does this by solving, in the top-down fashion but only once, just necessary 

subproblems of a given problem and recording their solutions in a table. 

 

          Initially, all the table's entries are initialized with a special "null" symbol to 

indicate that they have not yet been calculated. Thereafter, whenever a new value 

needs to be calculated, the method checks the corresponding entry in the table first,  

if this entry is not "null," it is simply retrieved from the table; otherwise, it is 

computed by the recursive call whose result is then recorded in the table.    

    

       The following algorithm implements this idea for the knapsack problem. After 

initializing the table, the recursive function needs to be called with i = n (the 

number of items) and j = W (the capacity of the knapsack). 

 

ALGORITHM MFKnapsack(i, j) 

//Implements the memory function method for the knapsack problem 

//Input: A nonnegative integer i indicating the number of the first 

//           items being considered and a nonnegative integer j indicating 

//           the knapsack's capacity 

//Output: The value of an optimal feasible subset of the first i items 

//Note: Uses as global variables input arrays Weights[l .. n ], Values[l .. n ], 

//      and table V[0 .. n, 0 .. W] whose entries are initialized with -l's except for 

//      row 0 and column 0 initialized with 0's 

 

 If V[i,j] < 0 

     if j < Weights[i] 

          value←  MFKnapsack(i- 1, j) 

     else 

          value ←  max(MFKnapsack(i- 1, j),  

                                        Values[i] + MFKnapsack(i - 1, j - Weights[i])) 

     V[i, j] ← value 

  return V[i, j] 
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 Example:  Let us consider the instance given by the following data: 

 

 

 
 

Initial Table: 

 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 -1 -1 -1 -1 -1 

2 0 -1 -1 -1 -1 -1 

3 0 -1 -1 -1 -1 -1 

4 0 -1 -1 -1 -1 -1 

      

 Memory function method may be less space-efficient than a space efficient 

version of a bottom-up algorithm.    

    Consider  V[4,5]  

       i = 4, j = 5, w4 = 2,  v4 = 15 

              j – w4 = 5 – 2 = 3 > 0 

  Therefore,   V[4,5] = max{V[3,5], 15 + V[3,3]} 

  Now we find the values of V[3,5] and V[3,3] 

 Similarly this process continue. 

  

Example of solving an instance of the knapsack problem by the memory function 

algorithm      
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Greedy Technique 

 
            The approach applied in the opening paragraph to the change-making 

problem is called ‘greedy’. Computer scientists consider it a general design 

technique despite the fact that it is applicable to optimization problems only.  

  

            The greedy approach suggests constructing a solution through a sequence of 

steps, each expanding a partially constructed solution obtained so far, until a 

complete solution to the problem is reached. On each step-and this is the central 

point of this technique, the choice made must be 

 

1. Feasible:   it has to satisfy the problem's constraints. 

2. Locally optimal:  it has to be the best local choice among all feasible choices 

                                  available on that step. 

3. Irrevocable:  once made, it cannot be changed on subsequent steps of the 

                            algorithm. 

 

           As a rule, greedy algorithms are both intuitively appealing and simple. In an 

algorithm strategy like Greedy, the decision is taken based on the information 

available. The Greedy method is the most straight forward method. It is popular for 

obtaining the optimized solutions. 

 

          In this we discuss two classic algorithms for minimum spanning tree problem: 

Prim’s algorithm and Kruskal’s algorithm. And another classic algorithm,  

Dijkstra’s algorithm for the Shortest-path problem in a weighted graph. 

 

 

Prim’s Algorithm 

 
        Prim’s Algorithm is applied for minimum spanning tree. 

 

DEFINITION:   A spanning tree of a connected graph is its connected acyclic 

subgraph (i.e., a tree) that contains all the vertices of the graph.  A minimum 

spanning tree of a weighted connected graph is its spanning tree of the smallest 

weight, where the weight of a tree is defined as the sum of the weights on all its 

edges.  

          The minimum spanning tree problem is the problem of finding a minimum 

spanning tree for a given weighted connected graph. 
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Example:  

 
           Prim's algorithm constructs a minimum spanning tree through a sequence 

of expanding subtrees. The initial subtree in such a sequence consists of a single 

vertex selected arbitrarily from the set V of the graph's vertices. On each iteration, 

we expand the current tree in the greedy manner by simply attaching to it the 

nearest vertex not in that tree. By the nearest vertex, we mean a vertex not in 

the tree connected to a vertex in the tree by an edge of the smallest weight. Ties 

can be broken arbitrarily. The algorithm stops after all the graph's vertices have 

been included in the tree being constructed. 

 

         In this the total number of iterations is  n-1, where ‘n’ is the number of 

vertices in the graph. 

 

Pseudocode of this algorithm. 

 

ALGORITHM Prim(G) 

//Prim's algorithm for constructing a minimum spanning tree 

//Input: A weighted connected graph G = (V, E) 

//Output: ET, the set of edges composing a minimum spanning tree of G 

 VT  ← { v0}      //the set of tree vertices can be initialized with any vertex 

 ET ←  ɸ 

 for  ← 1 to |V| - 1 do 

       find a minimum-weight edge  e* = (v*, u') among all the edges (v, u) 

       such that v is in VT  and  u  is in V - VT 

 VT   ←  VT  U {u*} 

  ET    ←   ET U {e*} 

return ET 
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Example:   Application of Prim's algorithm. The parenthesized labels of a vertex in 

the middle column indicate the nearest tree vertex and edge weight; selected 

vertices and edges are shown in bold. 
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         We can split the vertices that are not in the tree into two sets, the "fringe" and 

the "unseen." The fringe contains only the vertices that are not in the tree but are 

adjacent to at least one tree vertex. These are the candidates from which the next 

tree vertex is selected. The unseen vertices are all the other vertices of the graph, 

called "unseen" because they are yet to be affected by the algorithm. 

 

     After we have identified a vertex u* to be added to the tree, we need to perform 

two operations: 

 

1.  Move u* from the set V – VT to the set of tree vertices VT. 

2.  For each remaining vertex  u in V - VT  that is connected to u* by a shorter 

     edge than the u's current distance label, update its labels by u* and the weight 

     of the edge between u* and u, respectively.  

 

            The algorithm spends most of its in finding the smallest edge. So, time of the 

algorithm basically depends on how do we search this edge. Therefore Prim’s 

algorithm runs in O(n2) time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V SARALA, MCA DEPARTMENT, DNR COLLEGE Page 93 
 

Kruskal’s Algorithm 
 

          There is another greedy algorithm for the minimum spanning tree problem 

that also always yields an optimal solution. It is named Kruskal's algorithm. 

 

         Kruskal's algorithm looks at a minimum spanning tree for a weighted 

connected graph G = (V, E) as an acyclic subgraph with |V| - 1 edges for which the 

sum of the edge weights is the smallest. 

 

         The algorithm begins by sorting the graph's edges in nondecreasing order 

of their weights. Then, starting with the empty subgraph, it scans this sorted list 

adding the next edge on the list to the current sub graph if such an inclusion does 

not create a cycle and simply skipping the edge otherwise. 

 

Pseudocode of this algorithm. 

 

ALGORITHM Kruskal(G) 

//Kruskal's algorithm for constructing a minimum spanning tree 

//Input: A weighted connected graph G = (V, E) 

//Output: : ET, the set of edges composing a minimum spanning tree of G 

 

 Sort E in nondecreasing order of the edge weights w(e1) ≤ …≤  w(ei |E|) 

 ET  ←  ɸ;           ecounter ← 0 //initialize the set of tree edges and its size 

 k  ←  0              //initialize the number of processed edges 

while  ecounter  <  |V| - 1 do 

           k  ← k + l 

           if  ET U {ei k}   is acyclic 

                   ET  ←   ET U {ei k};      ecounter  ← ecounter + 1 

return  ET 

 

           The running time of Kruskal's algorithm will be dominated by the time 

needed for sorting the edge weights of a given graph. Hence, with an efficient 

sorting algorithm, the time efficiency of Kruskal's algorithm is  O(|E| log |E|). 
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Example: Application of Kruskal's algorithm. Selected edges are shown in bold. 
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 Dijkstra’s Algorithm          
 

        We consider the single-source shortest-paths problem: for a given vertex called 

the source in a weighted connected graph, find shortest paths to all its other vertices. 

This problem is called Dijkstra's algorithm. This algorithm is applicable to graphs 

with nonnegative weights only. 

 

           Dijkstra's algorithm finds the shortest paths to a graph's vertices in order of 

their distance from a given source. First, it finds the shortest path from the source 

to a vertex nearest to it, then to a second nearest, and so on. 

 

          In general, before its ith iteration commences, the algorithm has already 

identified the shortest paths to i - 1 other vertices nearest to the source. These 

vertices, the source, and the edges of the shortest paths leading to them from the 

source form a subtree Ti, of the given graph. The next vertex nearest to the source 

can be found among the vertices adjacent to the vertices of Ti. The set of vertices 

adjacent to the vertices in Ti are called "fringe vertices". 

 

       To identify the ith nearest vertex, the algorithm computes, for every fringe 

vertex u, the sum of the distance to the nearest tree vertex v and the length dv of the 

shortest path from the source to v, and then selects the vertex with the smallest such 

sum. The fact that it suffices to compare the lengths of such special paths is the 

central insight of Dijkstra's algorithm. 

 

         After we have identified a vertex u* to be added to the tree, we need to 

perform two operations: 

 

1.  Move u* from the fringe to the set of tree vertices. 

2.  For each remaining fringe vertex u that is connected to u* by an edge of 

     weight w(u*, u) such that du*.+  w(u*, u) < du ,  update the labels of u by u* 

    and du* + w(u*, u), respectively. 
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Pseudocode for  Dijkstra’s Algorithm: 

ALGORITHM Dijkstra(G, s) 

//Dijkstra's algorithm for single-source shortest paths 

//Input:  A weighted connected graph G = (V, E) with nonnegative weights 

//            and its vertex s 

//Output: The length dv of a shortest path from s to v  

//               and its penultimate vertex pv for every vertex v in V 

 

lnitialize(Q)          //initialize vertex priority queue to empty 

for every vertex v in V do 

       dv  ← ∞;   pv ← null 

       Insert(Q, v, dv)          //initialize vertex priority in the priority queue 

ds ← 0;   Decrease(Q, s, ds)    //update priority of s with ds 

VT  ← 0 

for  i ← 0 to |V| - 1do 

      u* ← DeleteMin(Q)    //delete the minimum priority element 

     VT ← VT U {u*} 

     for every vertex  u in V - VT that is adjacent to u* do 

           if du* + w(u*, u)  < du 

               du ← du*  + w(u*, u);  pu ← u* 

              Decrease(Q, u, du) 

 

 

        The time efficiency of Dijkstra's algorithm depends on the data structures 

used for implementing the priority queue and for representing an input graph itself. 

It is O(|E| log |V|). 
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Example: Application of Dijkstra's algorithm. The next closest vertex is shown in 

                 bold. 

 

 

 

The shortest paths and their lengths are: 

 

 

************** 
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UNIT-IV 

Limitations of Algorithm Power 

         A fair assessment of algorithms as problem-solving tools is inescapable: they 

are very powerful instruments, especially when they are executed by modern 

computers. But the power of algorithms is not unlimited, and its limits are 

discussed. 

           Some problems cannot be solved by any algorithm. Some problems can be 

solved algorithmically but not in polynomial time. And some  problems can be 

solved in polynomial time, there are usually lower bounds on the efficiency of the 

algorithms. 

          Given a class of algorithms for solving a particular problem, a lower bound 

indicates the best possible efficiency any algorithm from this class can have. 

 

Decision Trees 
 

          Many important algorithms, especially those for sorting and searching, we 

can comparing items of their inputs. Such algorithms with a device called the 

‘decision tree’. 

 

Example: Decision tree for finding a minimum of three numbers. 

 

 
 

           Each leaf node represents a possible outcome of the algorithm’s run on some 

input of size ‘n’. An important point is that the number of  leaves must be at least as 

large as the number of possible outcomes. Hence, the number of comparisons in the 

worst case is equal to the height of the algorithm’s decision tree. 
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          The central idea behind this model is that a tree with a given number of 

leaves, which is dictated by the number of possible outcomes. So it is not difficult to 

prove that for any binary tree with  ‘l’  leaves and height ‘h’, 

 

h  ≥  log2 l 
 

        Hence, the largest number of leaves in such a tree is 2h. 

        This formula puts a lower bound on the heights of binary decision trees.  

Such a bound is called the information- theoretic lower bound. This technique 

illustrate  two important problems: sorting and searching in a sorted array. 

 

1. Decision Trees for Sorting Algorithms 
 

         Most sorting algorithms are comparison based, i.e., they work by comparing 

elements in a list to be sorted.  By studying properties of decision trees for 

comparison-based sorting algorithms, we can derive important lower bounds on 

time efficiencies of such algorithms. 

         We can interpret an outcome of a sorting algorithm as finding a permutation 

of  the element indices of an input list that puts the list's elements in ascending 

order. For example, for the outcome a < c < b obtained by sorting a list a, b, c, 

the permutation in question is 1, 3, 2. Hence, the number of possible outcomes for 

sorting an arbitrary n-element list is equal to  n!. 
 

Figure: Decision tree for three element Selection sort 
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        A triple above a node indicates the state of the array being sorted. Note the two 

redundant comparisons  b <a  with a single possible outcome because of the results 

of some previously made comparisons. 

 

        Hence the worst -case number of comparisons made by such an algorithm 

cannot be less than [log2 n!l: 

 

        So ‘n log2 n’  comparisons are necessary to sort an arbitrary  n-element list by 

any comparison – based sorting algorithms. 

2. Decision Trees for Searching a Sorted Array 
 

          In this , decision trees can be used for establishing lower bounds on the 

number of key comparisons in searching a sorted array of  n keys: A[0] < A[l] < ... 

< A[n -1]. The principal algorithm for this problem is binary search in the worst 

case, C worst bs(n), is given by the formula: 

 

        We are dealing with three-way comparisons in which search key K is 

compared with some element A[i] to see whether  K < A[i], K = A[i], or K > A[i], 

it is natural to try using ternary decision trees. 

Figure: Ternary decision tree for binary search in a 4-element array. 
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          The internal nodes of that tree indicate the array's elements being compared 

with the search key. The leaves indicate either a matching element in the case of a 

successful search or a found interval that the search key belongs to in the case of an 

unsuccessful search.  

          For an array of  n elements, all such decision trees will have 2n +1 leaves. 

Since the minimum height h of a ternary tree with l  leaves is [log3 l], we get the 

following lower bound on the number of worst-case comparisons: 

 

       To obtain a better lower bound, we should consider binary decision trees. 

Figure: Binary decision tree for binary search in 4-element array. 

 

         Internal nodes are same as ternary tree. Leaves represent only unsuccessful 

searches, and there are  n+1 for searching an n-element array. Comparison of above 

2 trees, in the binary tree is simply the ternary tree with all the middle subtrees 

eliminated. Applying inequality  [h ≥ log2 l]: 
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P, NP and NP – Complete problems 

           Complexity theory seeks to classify problems according to their 

computational complexity. Problems that can be solved in polynomial time are 

called tractable, problems that cannot be solved in polynomial time are called 

intractable. 

 

          Most problems can be solved in polynomial time by some algorithm, they are  

computing the product and the greatest common divisor of two integers, sorting, 

searching, acyclicity of a graph, finding a minimum spanning tree, and finding the 

shortest paths in a weighted graph. The problems that can be solved in polynomial 

time as the set that computer science theoreticians call  P. A more formal definition 

includes in P only decision problems, which are problems with yes/no answers. 

 

DEFINITION:  Class P is a class of decision problems that can be solved in 

polynomial time by (deterministic) algorithms. This class of problems is called 

polynomial. 

          The restriction of  P to decision problems can be justified by the following 

Reasons: 

1)  it is sensible to exclude problems not solvable in polynomial time because of  

     their exponentially large output.  Eg:  generating subsets of a given set. 

  

2)  many important problems that are not decision problems in their most natural  

     formulation can be reduced to a series of decision problems that are easier 

     to study. Eg:  coloring problem. 

 

      Some decision problems cannot be solved at all by any algorithm. Such 

problems are called ‘undecidable’.  The halting problem is an example of 

undecidable decision problem.  Given a computer program and an input to it, 

determine whether the program will halt on that input or continue working 

indefinitely on it. 

 

      Assume that ‘A’ is an algorithm that solves the halting problem. That is, for 

any program ‘P’ and input ‘I’, 
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Best examples of this category: 

 

1.Hamiltonian circuit:  Determine whether a given graph has a Hamiltonian 

    circuit (a path that starts and ends at the same vertex and passes through all 

    the other vertices exactly once). 

2.Traveling salesman:  Find the shortest tour through n cities with known 

    positive integer distances between them (find the shortest Hamiltonian circuit in 

    a complete graph with positive integer weights). 

3. Knapsack problem:  Find the most valuable subset of n items of given positive 

    integer weights and values that fit into a knapsack of a given positive integer 

    capacity. 

4. Graph coloring:  For a given graph, find its chromatic number (the smallest 

    number of colors that need to be assigned to the graph's vertices so that no two 

   adjacent vertices are assigned the same color). 

 

Nondeterministic algorithm:  is a two-stage procedure that takes as its input an 

instance  I of a decision problem and does the following. 

 

    Nondeterministic ("guessing") stage: An arbitrary string S is generated that 

can be thought of as a candidate solution to the given instance I. 

 

    Deterministic ("verification") stage: A deterministic algorithm takes both  

I and S as its input and outputs yes if  S represents a solution to instance I.  

 

Finally, a nondeterministic algorithm is said to be nondeterministic polynomial if 

the time efficiency of its verification stage is polynomial. 

 

DEFINITION:  Class ‘NP’ is the class of decision problems that can be solved by 

nondeterministic polynomial algorithms. This class of problems is called 

‘nondeterministic polynomial’. 

 

          Most decision problems are in NP. First of all, this class includes all the 

problems in P: 

 
        This is true because, if a problem is in P, we can use the deterministic 

polynomial time algorithm that solves it in the verification-stage of a 

nondeterministic algorithm that simply ignores string  S generated in its 

nondeterministic ("guessing") stage. But N P also contains the Hamiltonian circuit 

problem, the partition problem, traveling salesman, the knapsack, graph coloring 

and many hundreds of other difficult combinatorial optimization problems. 
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NP-Complete Problems 

 

DEFINITION:  A decision problem D is said to be NP-Complete if 

1. it belongs to class NP; 

2. every problem in NP is polynomially reducible to D. 

 

        Notion of an NP-Complete problem polynomial time reductions of NP 

problems to an NP-Complete problem are shown by arrows. 

 

 
       The fact that closely related decision problems are polynomially reducible to 

each other is not very surprising. For example, let us prove that the Hamiltonian 

circuit problem is polynomially reducible to the decision version of the traveling 

salesman problem. 

 

        The definition of NP-Completeness immediately implies that if we find a 

deterministic polynomial time algorithm for just one NP-complete problem then 

every problem in NP can be solved in polynomial time by a deterministic algorithm, 

and hence P = NP. 

      

       The first proof of a problem’s NP- completeness was published by S.Cook for 

the CNF satisfiability problem: three Boolean variables x1, x2, x3 and their negations 

denoted x1, x2, x3 respectively. 

 

 
       The CNF-satisfiability problem asks whether or not we can assign values true 

and false to variables of a given boolean expression in its CNF form to make the 

entire expression true.  

         ( if x1 =true, x2 =true, and x3 =false, the entire expression is true.) 
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Coping with the limitations of Algorithm Power 

 
         This approach makes it possible to solve some large instances of difficult 

combinatorial problems, in the worst case. Two algorithm techniques, Back-

tracking and Branch-and-bound make it possible to solving at least some large 

instances of difficult combinatorial problems. Both strategies can be considered an 

improvement over exhaustive search. These are based on the construction of a 

‘State-space-tree’ whose nodes reflect specific choices made for a solution’s 

components. 

 

Backtracking 
 

       Backtracking is one of the k=most general technique. In this, we search for the 

set of solutions or optimal solution which satisfies some constraints. Backtracking is 

a variation of exhaustive search, where the search is refined by eliminating certain 

possibilities. Backtracking is usually faster method than an exhaustive search.  

 

        In this method we construct a tree, called state-space tree. Its root represents an 

initial state before the search for a solution begins. The nodes of the first level in the 

tree represents the choices made for the first component of a solution, the second 

level nodes represent the choices for the second component, and so on. 

 

        A node in a state-space tree is said to be ‘promising’ if it corresponds to a 

partially constructed solution that may still lead to a complete solution; otherwise, 

it is called ‘nonpromising’. Leaves represent either nonpromising dead ends or 

complete solutions found by the algorithm. 

 

        A state-space tree for a backtracking algorithm is constructed in the manner of 

depth- first search.  

       If the current node is promising, its child is generated by adding the first 

remaining legitimate option for the next component of a solution.  

       If the current node is nonpromising, the algorithm backtracks to the node's 

parent to consider the next possible option for its last component; if there is no such 

option, it backtracks one more level up the tree, and so on. 

      Finally, if the algorithm reaches a complete solution to the problem, it either 

stops or continues searching for other possible solutions. 
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General Algorithm 

 

AlGORITHM Backtrack(X[l..i]) 

//Gives a template of a generic backtracking algorithm 

//Input: X[1..i] specifies first  i  promising components of a solution 

//Output: All the tuples representing the problem's solutions 

if X[1..i] is a solution write X[l..i] 

else       

for each element x ϵ  Si+1 consistent with X[1..i] and the constraints do 

     X[i + 1]  ← X 

    Backtrack( X[1..i + 1] ) 

 

 

n-Queens Problem 

 
        The problem is to place ‘n’ queens on an n-by-n chessboard so that no two 

queens attack each other by being in the same row or in the same column or on 

the same diagonal. For n = 1, the problem has a trivial solution, and it is easy to 

see that there is no solution for n = 2 and n = 3. 

         So let us consider the four-queens problem and solve it by the backtracking 

technique. Since each of the four queens has to be placed in its own row, all we 

need to do is to assign a column for each queen on the board. 

 
 

       We start with the empty board and then place queen 1 in the first possible 

position of its row, which is in column 1 of row 1. Then we place queen 2, after 

trying unsuccessfully colunms 1 and 2, in the first acceptable position for it, which 

is square (2,3), the square in row 2 and column 3. This proves to be a dead end 

because there is no acceptable position for queen 3. So, the algorithm backtracks 

and puts queen 2 in the next possible position at (2,4). Then queen 3 is placed at 

(3,2), which proves to be another dead end. The algorithm then backtracks all the 

way to queen 1 and moves it to (1,2). Queen 2 then goes to (2,4), queen 3 to (3,1), 

and queen 4 to ( 4,3), which is a solution to the problem. 
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State-Space tree of solving 4-Queen problem by Backtracking. 

 

 
       Here  ‘x’ denotes an unsuccessful attempt to place a queen in the indicated 

column. The numbers above the nodes indicate the order in which the nodes are 

generated. 
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Hamiltonian Circuit Problem 
 

          A path that starts and ends at the same vertex and passes through all the other 

vertices exactly once. 

 

Example:  

 
Path: a → b → f → e → c → d → a 

 
       We can assume that if a Hamiltonian circuit exists, it starts at vertex ‘a’. We 

make vertex ‘a’ the root of the state-space tree. Using the alphabet order to break 

the three-way tie among the vertices adjacent to ‘a’, we select vertex ‘b’. From ‘b’, 

the algorithm proceeds to’ ‘c, then to ‘d’, then to ‘e’, and finally to ‘f’, which proves 

to be a dead end. So the algorithm backtracks from ‘ f’ to ‘e’, then to ‘d’, and then 

to ‘c’, which provides the first alternative for the algorithm to pursue. Going from 

‘c’ to ‘e’ eventually proves useless, and the algorithm has to backtrack from ‘e’ to 

‘c’ and then to ‘b’. From there, it goes to the vertices f, e, c, and d, from which it 

can legitimately return to ‘a’, yielding the Hamiltonian circuit a, b, f, e, c, d, a. If 

we wanted to find another Hamiltonian circuit, we could continue this process by 

backtracking from the leaf of the solution found. 
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Subset-Sum Problem 
 

         Fmd a subset of a given set S= {s1,s2, ... , sn) of n positive integers whose 

sum is equal to a given positive integer  ‘d’. 

         For example,  for S = {1, 2, 5, 6, 8] and d = 9, there are two solutions:  

{1,2, 6} and {1, 8}. 

          It is convenient to sort the set's elements in increasing order. So we will 

assume that 

                               s1  ≤ s2  ≤……. ≤ sn 

 

       The state-space tree can be constructed as a binary tree for the instance 

S= (3, 5, 6, 7} and d = 15. 

 
Here the number inside a node is the sum of the elements already included in 

subsets represented by the node.  

 

        The root of the tree represents the starting point, with no decisions about the 

given elements. Its left and right children represent, respectively, inclusion and 

exclusion of  s1 in a set being sought. Similarly, going to the left from a node of the 

first level corresponds to inclusion of s2, while going to the right corresponds to its 

exclusion, and so on.  

       We record the value of s', the sum of these numbers, in the node. If s' is equal 

to d, we have a solution to the problem.  If  s' is not equal to d, we can terminate the 

node as non promising if either of the following two inequalities holds: 
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Branch-and-Bound 
 

          Branch-and-Bound is a general algorithm for finding optimal solutions of 

various optimization problems. Branch-and-Bound is general optimization 

technique that applies where the greedy method and dynamic programming fail. 

        Note that in the standard terminology of optimization problems, a ‘feasible 

solution’  is a point in the problem's search space that satisfies all the problem's 

constraints,  while an ‘optimal solution’  is a feasible solution with the best value 

of the objective function. 

 

Compared to backtracking, branch-and-bound requires two additional items: 
 

1. A  way to provide, for every node of a state-space tree, a bound on the best 

    value of the objective function on any solution that can be obtained by adding 

    further components to the partial solution represented by the node. 

 

2. The value of the best solution seen so far. 

 

         If this information is available,  we can compare a node's bound value with the 

value of the best solution seen so far:  if the bound value is not better than the best 

solution,   because no solution obtained from it can yield a better solution than the 

one already available. This is the principal idea of the branch-and-bound technique. 

 

      In general, we terminate a search path at the current node in a state-space 

tree of a branch-and-bound algorithm for any one of the following three reasons: 

1. The value of the node's bound is not better than the value of the best solution 

    seen so far. 

2. The node represents no feasible solutions because the constraints of the 

    problem are already violated. 

3. The subset of feasible solutions represented by the node consists of a single 

    point.  
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The Knapsack Problem 
 

            In this problem, given  n  items of known weights wi and values vi, 

 i = 1, 2, ...n ,  and a knapsack of capacity W, find the most valuable subset of the 

items that fit in the knapsack. It is convenient to order the items of a given instance 

in descending order by their value-to-weight ratios. Then the first item gives the 

best payoff per weight unit and the last one gives the worst payoff per weight unit, 

with ties resolved arbitrarily: 

 

 
        We record the total weight w and the total value v of this selection in the node, 

along with some upper bound ub on the value of any subset that can be obtained by 

adding zero or more items to this selection. 

 

       A simple way to compute the upper bound ub is to add to v, the total value of 

the items already selected, the product of the remaining capacity of the knapsack 

W - w and the best per unit payoff among the remaining items, which is  

vi+1/ wi+l :        

 
Example: 

 
        At the root of the state-space tree (in figure), no items have been selected.  

Hence, both the total weight of  the items already selected w and their total value v 

are equal to ‘0’. The value of the upper bound computed by above formula is $100. 

Node 1, the left child of the root, represents the subsets that include item 1. The 

total weight and value of the items already included are 4 and  $40,  the value of the 

upper bound is 40 + (10 - 4) * 6 = $76. Node 2 represents the subsets that do not 

include item 1. Accordingly, w = 0, v = $0, and ub = 0 + (10- 0) * 6 = $60. Since 

node 1 has a larger upper bound than the upper bound of node 2, it is more 

promising for this maximization problem, and we branch from node 1 first. Its 

children, nodes 3 and 4 represent subsets with item 1 and with and without item 2. 

Since the total weight w of every subset represented by node 3 exceeds the 

knapsack's capacity, node 3 can be terminated immediately. 
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State-space tree of the branch-and-bound algorithm for the instance of the 

knapsack problem: 
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Traveling Salesman Problem 
 

        To apply the branch-and-bound technique to instances of the traveling 

salesman problem if we come up with a reasonable lower bound on tour lengths. 

One very simple lower bound can be obtained by finding the smallest element in the 

intercity distance matrix D and multiplying it by the number of cities n. 

 

Example: 

 

 
 

Figure:  (a) Weighted graph. (b) State-space tree of the branch-and-bound 

algorithm to find the shortest Hamiltonian circuit in this graph. The list of vertices 

in a node specifies a beginning part of the Hamiltonian circuits represented by the 

node. 

 

          For each city i, 1 ≤ i ≤ n, find the sum Si of the distances from city i to 

the two nearest cities; compute the sum S of these n numbers; divide the result by 

2; and, if all the distances are integers, round up the result to the nearest integer: 

 

                                       lb= [S/2] 
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For example, for the instance of the above graph, formula yields 
 

              lb = [(1+3) + (3+6) + (1+2) + (3+4) + (2+3)] / 2 = 14. 
 

       For example, for all the Hamiltonian circuits of the graph, that must include 

edge (a, d), we get the following lower bound by summing the lengths of the two 

shortest edges with each of the vertices, with the edges (a, d) and (d, a): 
 

              [(l+ 5) + (3 + 6) + (1+ 2) + (3 + 5) + (2 + 3)] / 2  = 16. 
 

      Now apply the branch-and-bound algorithm, with the bounding function given 

by formula, to find the shortest Hamiltonian circuit for the graph of the given graph. 

      First we start at ‘a’. Second, because our graph is undirected, we can generate 

only tours in which b is visited before c. In addition, after visiting n - 1 = 4 cities, 

a tour has no choice but to visit the remaining unvisited city and return to the 

starting one.  

 

 

Approximation Algorithms for NP-hard Problems 

 
       The optimization versions of such difficult combinatorial problems fall in the 

class of NP-hard problems-problems that are at least as hard as NP-complete 

problems.  Hence, there are no known polynomial-time algorithms for these 

problems. 

       If we use an algorithm whose output is just an approximation of the actual 

optimal solution,  we can quantify the accuracy of an approximate solution sa to a 

problem minimizing some function  f  by the size of the relative error of this 

approximation 

 
 

to make this ratio greater than or equal to 1, as it is for minimization problems. 
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The closer r(sa) is to 1, the better the approximate solution. The best upper bound of  

possible r(sa) values taken over all instances of the problem is called the 

‘performance ratio’. 

 

Approximation Algorithms for the Traveling Salesman Problem 
 

Nearest-neighbor algorithm:  The following simple greedy algorithm is based on 

the nearest-neighbor heuristic: the idea of always going to the nearest unvisited city 

next. 

Step 1:  Choose an arbitrary city as the start. 

Step 2:  Repeat the following operation until all the cities have been visited: go to 

           the unvisited city nearest the one visited last (ties can be broken arbitrarily). 

Step 3:  Return to the starting city. 

 

Example:  

 
 

 
i.e, tour sa is 25% longer then the optimal tour s* 

 

Twice-around-the-tree algorithm: This algorithm exploits a connection between 

Hamiltonian Circuits and spanning trees of the same graph. 

 

Step 1:  Construct a minimum spanning tree of the graph corresponding to a 

              given instance of the traveling salesman problem. 

Step 2:  Starting at an arbitrary vertex, perform a walk around the minimum 

              spanning tree recording all the vertices passed by. 
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Step 3:  Scan the vertex list obtained in Step 2 and eliminate from it all repeated 

             occurrences of the same vertex except the starting one at the end of 

             the list. The vertices remaining on the list will form a Hamiltonian circuit, 

             which is the output of the algorithm. 

 

 
       Let us apply this algorithm to the. The minimum spanning tree of this graph is 

made up of edges (a, b), (b, c), (b, d), and (d, e) (Fig. 12.1lb ). A twice-around-the-

tree walk that starts and ends at a is 

                                           a, b, c, b, d, e, d, b, a. 

      Eliminating the second b (a shortcut from c to d), the second d, and the third b 

(a shortcut from e to a) then yields the Hamiltonian circuit, 

a, b, c, d, e, a 

of  length 41. 

 

 

Approximation Algorithms for the Knapsack Problem 
 

         The knapsack problem is  another well-known NP-hard problem. Given n 

items of known weights w1, ... , wn and values v1, ... , vn, and a knapsack of weight 

capacity W, find the most valuable sub-set of the items that fits into the knapsack. 

 

Greedy algorithms for the knapsack problem:  In this select the items in 

decreasing order of their weights; however, heavier items may not be the most 

valuable in the set. Alternatively, if we pick up the items in decreasing order of their 

value, there is no guarantee that the knapsack's capacity will efficiently.  
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Greedy algorithm for the discrete knapsack problem 

 

Step 1:  Compute the value-to-weight ratios ri = vi / wi, i = 1, ... , n, for the items  

              given. 

Step 2:  Sort the items in nonincreasing order of the ratios computed in Step1. 

              (Ties can be broken arbitrarily.) 

Step 3:  Repeat the following operation until no item is left in the sorted list: if the 

              current item on the list fits into the knapsack, place it in the knapsack;  

              otherwise, proceed to the next item. 

 

EXAMPLE:  Let us consider the instance of the knapsack problem with the     

knapsack's capacity equal to 10 and the item information as follows: 

 
 

    The greedy algorithm will select the first item of weight 4, skip the next item of 

weight 7, select the next item of weight 5, and skip the last item of weight 3. The 

solution obtained happens to be optimal for this instance. 

 

 

****************** 


	combinatorial problems.
	 The closest-pair problem and the convex-hull problem are comes under this category.
	FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM EFFICIENCY
	Analysis Framework
	Worst-case efficiency
	Average case efficiency

	ASYMPTOTIC NOTATIONS
	Worst-case efficiency
	Let us consider the problem of computing the sum of ‘n’ numbers,
	a0, a1,.. an-1 . If n > 1,  we can divide the problem into two sub problems, then we compute the first n /2 numbers and then we compute the remaining numbers. Once each of these two sub problems are computed we can add their values to get the solution...
	 a0 + ……+ an-1
	 (a0 + ….+ a(n/2)-1) + (an/2 + ….+ an-1)
	More  generally an instance of size ‘n, can be divided into smaller instances.
	T(n) =       g(n)
	T(n1) + T(n2) +….+f(n)     for all n > 1
	Here  T(n) is represented for the time taken in order to divide and conquer of   any input of size ‘n’.
	g(n) represented for the time taken to compute the smaller instances for smaller inputs.
	f(n) is denoted for the time taken for dividing the problem an combining the solutions of sub problems.
	Complexity:
	T(n) =       T(n) = T(1) = 1          where n =1
	a.T(n/b) + f(n)             for all n>1
	The above equation is called as the recurrence relation of divide and conquer.
	‘a’ denotes that how many no. of times we are going to find the time complexity.
	‘b’ denotes for how many no. of smaller instances are made.
	Master Theorem:
	If f(n) ϵ ϴ(nd) where d ≥ 0 in the recurrence equation T(n) = a. T(n/b) + f(n), then
	For example, the recurrence equation for the no. of additions A(n) made by the divide and conquer summation algorithm on inputs of size n = 2k is
	A(n) = 2. A(n /2) + 1
	Thus, for this example a =2, b =2 and d = 0.
	Hence, a > bd we can represent the order of growth
	A(n) ϵ ϴ(n log ba ) = ϴ( n log22) = ϴ(n)
	according to the Master Theorem.
	Applications of Divide and Conquer Approach

	Decrease and Conquer
	Applications of Dynamic Programming Approach


