Department: Mathematics Paper: Differential equations&Abstract Algebra Class: I BSc Semester: I

Linear differential equations, differential equations reducible to linear form, Exact differential equations

Integrating factor ,change of variables, total differential equations, Method s of solving integrable total differential equations

Simultaneous differential equations, methods of finding general solution of F(x,y,p)=0

Orthogonal trajectories, groups-elementary properties, binary operations,

Groups. Finite groups and group tables, subgroups

Cosets, Lagrange's theorem

Normal subgroups & factor groups

Homomorphisms-definition and elementary properties,

Isomorphisms, fundamental theorem of homomorphism

Automorphism, permutation groups, cayley's theorem

Groups of permutations, cycles, Alternating group A_n

Cyclic groups- definition and examples, classification of cyclic groups

Generators and subgroups of cyclic groups

DANTULURI NARAYANA RAJU COLLEGE (AUTONOMOUS) (A College with Potential for Excellence) Bhimavaram, W.G.DIST. A.P. Academic Year: 2014 – 15 ment: Mathematics Paper: Differential equations& Abstract Alge

Department: Mathematics Paper: Differential equations&Abstract Algebra Class: I BSc Semester: I

Linear differential equations, differential equations reducible to linear form, Exact differential equations

Integrating factor ,change of variables, total differential equations, Method s of solving integrable total differential equations

Simultaneous differential equations, methods of finding general solution of F(x,y,p)=0

Orthogonal trajectories, groups-elementary properties, binary operations,

Groups. Finite groups and group tables, subgroups

Cosets, Lagrange's theorem

Normal subgroups & factor groups

Homomorphisms-definition and elementary properties,

Isomorphisms, fundamental theorem of homomorphism

Automorphism, permutation groups, cayley's theorem

Groups of permutations, cycles, Alternating group A_n

Cyclic groups- definition and examples, classification of cyclic groups

Generators and subgroups of cyclic groups

DANTULURI NARAYANA RAJU COLLEGE (AUTONOMOUS) (A College with Potential for Excellence) Bhimavaram, W.G.DIST. A.P. Academic Year: 2015 – 16. Department: Mathematics Paper: Differential Equations,IA Class: I BSC Semester: I

Linear differential equations, Differential equations reducible to linear form

Exact differential equations, Integrating factors, change of variables

Simultaneous differential equations, orthogonal trajectories Equations solvable for p, equations solvable for y, equations

Equations solvable for p, equations solvable for y, equations solvable for x

Equations that do not contain x(or y), equations of the first degree in x and y-Clairaut's equation

Solution of homogeneous linear differential equations of order n with constant coefficients

Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators

Method of variation of parameters, linear differential

equations with non-constant coefficients

The Cauchy-euler equation, system of linear differential equations

Formation of partial differential equations, equations of first order

Lagrange's linear equations, Charpit's method

Standard types of first order non linear partial differential equations

DANTULURI NARAYANA RAJU COLLEGE (AUTONOMOUS) (A College with Potential for Excellence) Bhimavaram, W.G.DIST. A.P.

Academic Year: 2016 – 17.

Department: MathematicsPaper: Differential EquationsClass: I BScSemester: 1

Linear differential equations; Differential equations reducible to linear form

Exact differential equations; Integrating factors; Change of variables

Orthogonal trajectories, Equations solvable for p; Equations solvable for y

Equations solvable for x; Equations that do not contain x (or y); Equations of the first degree in x and y - Clairaut's equation.

Solution of homogeneous linear differential equations of order n with constant coefficients. Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators.

General Solution of f(D)y=0, General solution of

f(D)y=Q when Q is a function of x, 1/f(D) is expressed as partial fractions Particular integral of f(D)y=Q when $Q=be^{ax}$,

particular integral of f(D)y=Q when Q=bsinax, bcosax

Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators, particular integral of f(D)y=Q when $Q=bx^k$.

Particular integral of f(D)y=Q, when $Q=e^{ax}V$, where V is a function of x, particular integral of f(D)y=Q, when Q=xV, where V is a function of x.

Particular integral of f(D)y=Q, when $Q=x^nV$, where V is a function of x. Method of variation of Parameters.

Linear Differential equations with non-constant coefficients, The Cauchy - Euler equations

Method of undetermined coefficients.

Department: Mathematics Paper: Differential Equations, 1A Class: I BSc Semester: I

Linear differential equations; Differential equations reducible to linear form

Exact differential equations; Integrating factors; Change of variables Orthogonal trajectories, Equations solvable for p; Equations solvable for y

Equations solvable for x; Equations that do not contain x (or y); Equations of the first degree in x and y - Clairaut's equation.

Solution of homogeneous linear differential equations of order n with constant coefficients.Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators.

General Solution of f(D)y=0, General solution of

f(D)y=Q when Q is a function of x, 1/f(D) is expressed as partial fractions

Particular integral of f(D)y=Q when $Q=be^{ax}$,

particular integral of f(D)y=Q when Q=bsinax, bcosax

Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators, particular integral of f(D)y=Q when $Q=bx^k$.

Particular integral of f(D)y=Q, when $Q=e^{ax}V$, where V is a function of x, particular integral of f(D)y=Q, when Q=xV, where V is a function of x.

Particular integral of f(D)y=Q, when $Q=x^nV$, where V is a function of x. Method of variation of Parameters.

Linear Differential equations with non-constant coefficients

The Cauchy-Euler Equations

Method of undetermined coefficients

Department: Mathematics Paper: Differential Equations, IA Class: I BSc Semester: I

Linear differential equations; Differential equations reducible to linear form Exact differential equations; Integrating factors; Change of variables

Orthogonal trajectories, Equations solvable for p; Equations solvable for y

Equations solvable for x; Equations that do not contain x (or y); Equations of the first degree in x and y - Clairaut's equation.

Solution of homogeneous linear differential equations of order n with constant coefficients. Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators.

General Solution of f(D)y=0, General solution of

f(D)y=Q when Q is a function of x, 1/f(D) is expressed as partial fractions Particular integral of f(D)y=Q when $Q=be^{ax}$,

particular integral of f(D)y=Q when Q=bsinax, bcosax

Solution of the non-homogeneous linear differential equations with constant coefficients by means of polynomial operators, particular integral of f(D)y=Q when $Q=bx^k$.

Particular integral of f(D)y=Q, when $Q=e^{ax}V$, where V is a function of x, particular integral of f(D)y=Q, when Q=xV, where V is a function of x.

Particular integral of f(D)y=Q, when $Q=x^nV$, where V is a function of x. Method of variation of Parameters.

Linear Differential equations with non-constant coefficients, The Cauchy -Euler equations

Method of undetermined coefficients.

Paper: Differential equations&Real Analysis, 1B **Department:** Mathematics Class: I BSc Semester: II Linear differential Equations with constant coefficients, Homogeneous linear differential equations with constant coefficients Solution of homogeneous linear differential equations of order n with constant coefficients Solution of non homogeneous linear differential equations with constant coefficients by means of polynomial operators Linear differential equations with variable coefficients, method of variation of parameters Linear differential equations with non-constant coefficients, the Cauchy Euler equation, method of undetermined coefficients System of linear differential equations: system of first order differential equations, solution of a system of linear equations with constant coefficients, an equivalent triangular system, degenerate case The Real numbers: the set of natural numbers, integers, rational numbers and real numbers, the set of real numbers, IR has complete ordered pair intervals, bounds&orders-completeness of the set of real numbers Some important properties of real numbers, the dense property of the set of real numbers, the modulus of real numbers Limit point of a set, existence of limit point Sequence, bounded and unbounded sequence, limit point of a sequence, convergent sequences, limit of a sequence, algebra of convergent sequences, bounded non convergent sequence, Important theorems on limits, Cauchy sequence Convergency of a sequence, monotonic sequence and their convergency, subsequences, Infinite series with positive terms, Infinite series of its convergency and sum A necessary condition for the convergency of an infinite series, cauchy's general principle of convergence General test for convergency of positive term series, two important standard series, Comparison test for the convergency of positive term series, comparison test of the first type Practical comparison test of the first type and comparison test of the second type Practical comparison test of the second type, D'Alembert's ratio test, Cauchy's

 n^{th} root test

Paper: Differential equations&Real Analysis, 1B **Department:** Mathematics Class: I BSc Semester: II Linear differential Equations with constantcoefficients, Homogeneous linear differential equations with constant coefficients Solution of homogeneous linear differential equations of order n with constant coefficients Solution of non homogeneous linear differential equations with constant coefficients by means of polynomial operators Linear differential equations with variable coefficients, method of variation of parameters Linear differential equations with non-constant coefficients, the Cauchy-Euler equation, method of undetermined coefficients System of linear differential equations: system of first order differential equations, solution of a system of linear equations with constitut coefficients, an equivalent triangular system, degenerate case The Real numbers: the set of natural numbers, integers, rational numbers and real numbers, the set of real numbers, IR has complete ordered pair intervals, bounds&orders-completenes of the set of real numbers Some important properties of real numbers, the dense property of the set of real numbers, the modulus of real numbers Limit point of a set, existence of limit point Sequence, bounded and unbounded sequence, limit point of a sequence, convergent sequences, limit of a sequence, algebra of convergent sequences, bounded non convergent sequence, Important theorems on limits, Cauchy sequence Convergency of a sequence, monotonic sequence and their convergency, subsequences, Infinite series with positive terms, Infinite series of its convergency and sum A necessary condition for the convergency of an infinite series, cauchy's general principle of convergence General test for convergency of positive term series, two important standard series, Comparision test for the convergency of positive term series, comparison test of the first type

Practical comparison test of the first type and comparison test of the second type Practical comparison test of the second type, D'Alembert's ratio test , Cauchy n^{th} root test

Department: Mathematics Paper: Solid Geometry, 1B Class: I BSc Semester II
Co-ordinates of a point in , Distance between two points, section formula, angle between two lines
Equation of a plane in terms of it's intercepts on the axis, equation of the plane through the given points Length of perpendicular from a given point to a given plane, bisector of angle between planes
Combined equation of two planes, orthogonal projection on a plane, Equation of a line, angle between a line and a plane
the condition that a given line may lie in a given plane, The condition that two given lines are coplanar, number of arbitrary constants in the equations of straight line
Sets of conditions which determine a line, the shortest distance between two lines, the length and equation of the short distance between two straight lines
Length of the perpendicular from a given j point to a given line, definition and equation of the sphere
Equation of the sphere through four point,Plane section of a sphere, Intersection of two spheres, equation of a circle, sphere through a given circle,
intersection of a sphere and a line, tangent plane, plane of contact, polar plane, Pole of a plane, conjucate points, conjucate planes
angle of intersection of two spheres
conditions for two spheres to be orthogonal, power of a point, radical plane, Co-axial system of spheres, simplified form of the equation of two spheres, definition of a cone
Equation f cones with vertex at origin are homogeneous, condition that the general equation of the second degree should represent a cone
Enveloping cone of a sphere, right circular cone, equation of the right circular cone with a given vertex
Axis and semi vertical angle, condition that a cone may have three mutually perpendicular generators, intersection of a line and a quadric cone
Tangent lines, tangent plane at a point, condition that a plane may touch the cone, reciprocal cones, intersection of two cones with a common vertex
Right circular cone, equation of the right circular cone with a given vertex,axis and semi- vertical angle,definition of cylinder
Equation to the cylinder whose generators intersect a given conic and are parallel to a given line, enveloping cylinder of a sphere, the right circular cylinder, equation of the right circular cylinder with a given axis and radius

Department: Mathematics	Paper: Solid Geometry, 1B	Class: I
BSc Semester: II		
Co-ordinates of a point in, Distance	between two points, section form	ula, angle between
two lines		
Equation of a plane in terms of it's in	ntercepts on the axis, equation of	the plane through
the given points Length of perpendic	cular from a given point to a given	n plane, bisector of
angle between planes		
Combined equation of two planes, or	rthogonal projection on a plane, I	Equation of a line,
angle between a line and a plane		
the condition that a given line may l	ie in a given plane, The condition	n that two given lines
are coplanar, number of arbitrary con	nstants in the equations of straigh	t line
Sets of conditions which determine a	a line, the shortest distance betwe	en two lines, the
length and equation of the short dista	ance between two straight lines	
Length of the perpendicular from a g	givenj point to a given line, definit	tion and equation of
the sphere		
Equation of the sphere through four	point,Plane section of a sphere, In	ntersection of two
spheres, equation of a circle, sphere	through a given circle,	
intersection of a sphere and a line, ta	ngent plane, plane of contact,pol	ar plane, Pole of a
plane, conjucate points, conjucate pl	anes	
angle of intersection of two spheres		
conditions for two spheres to be orth	nogonal, power of a point, radical	l plane, Co-axial
system of spheres, simplified form o	f the equation of two spheres, det	finition of a cone
Equation f cones with vertex at orig	in are homogeneous, condition th	hat the general
equation of the second degree should	l represent a cone	
Enveloping cone of a sphere, right ci	ircular cone, equation of the right	circular cone with a
given vertex		
Axis and semi vertical angle, conditi	on that a cone may have 3 mutua	lly perpendicular
generators, intersection of a line and	a quadric cone	
Tangent lines, tangent plane at a point	nt, condition that a plane may tou	ich the cone,
reciprocal cones, intersection of two	cones with a common vertex	
Right circular cone, equation of the r	right circular cone with a given v	ertex, axis and semi-
vertical angle, definition of cylinder		
Equation to the cylinder whose gene	rators intersect a given conic and	are parallel to a
given line, enveloping cylinder of a	sphere, the right circular cylinder	, equation of the
right circular cylinder with a given a	xis and radius	

Department: N	Iathematics	Paper: Solid Geometry, 1B	Class: I
BSc	Semester: II		

Co-ordinates of a point in , Distance between two points, section formula, angle between two lines

Equation of a plane in terms of it's intercepts on the axis, equation of the plane through the given points

Length of perpendicular from a given point to a given plane, bisector of angle between planes

Combined equation of two planes, orthogonal projection on a plane

Equation of a line, angle between a line and a plane, the condition that a given line may lie in a given plane

The condition that two given lines are coplanar, number of arbitrary constants in the equations of straight line

Sets of conditions which determine a line, the shortest distance between two lines, the length and equation of the short distance between two straight lines

Length of the perpendicular from a given j point to a given line, definition and equation of the sphere

Equation of the sphere through four point, Plane section of a sphere

Intersection of two spheres, equation of a circle, sphere through a given circle, intersection of a sphere and a line, tangent plane, plane of contact, polar plane

Pole of a plane, conjucate points, conjucate planes, angle of intersection of two spheres, conditions for two spheres to be orthogonal, power of a point, radical plane

Co-axial system of spheres, simplified form of the equation of two spheres,

definition of a cone, vertex, guiding curve, generators, equation of the cone with a given vertex and guiding curve

Equation of cones with vertex at origin are homogeneous, condition that the general equation of the second degree should represent a cone

Enveloping cone of a sphere, right circular cone, equation of the right circular cone with a given vertex

Axis and semi vertical angle, condition that a cone may have 3 mutually perpendicular generators, intersection of a line and a quadric cone

Tangent lines, tangent plane at a point, condition that a plane may touch the cone, reciprocal cones, intersection of two cones with a common vertex

Department: Mathematics Paper: Solid Geometry, 1B	Class: I
BSc Semester:II	
Co-ordinates of a point in , Distance between two points, section for	ormula,
angle between two lines	
Equation of a plane in terms of it's intercepts on the axis, equation o	f the
plane through the given points	
Length of perpendicular from a given point to a given plane, bisector	r of angle
between planes	
Combined equation of two planes, orthogonal projection on a plane	
Equation of a line, angle between a line and a plane, the condition th	at a given
line may lie in a given plane	
The condition that two given lines are coplanar, number of arbitrary	constants
in the equations of straight line	
Sets of conditions which determine a line, the shortest distance betw	een two
lines, the length and equation of the short distance between two strai	ght lines
Length of the perpendicular from a given j point to a given line, define	ition and
equation of the sphere	
Equation of the sphere through four point, Plane section of a sphere	
Intersection of two spheres, equation of a circle, sphere through a give	ven circle,
intersection of a sphere and a line, tangent plane, plane of contact, po	lar plane
Pole of a plane, conjucate points, conjucate planes, angle of intersect	tion of
two spheres, conditions for two spheres to be orthogonal, power of a	point,
radical plane	
Co-axial system of spheres, simplified form of the equation of two spheres	pheres,
definition of a cone, vertex, guiding curve, generators, equation of the	ie cone
with a given vertex and guiding curve	
Equation of cones with vertex at origin are homogeneous, condition t	hat the
general equation of the second degree should represent a cone	
Enveloping cone of a sphere, right circular cone, equation of the right	nt circular
cone with a given vertex	
Axis and semi vertical angle, condition that a cone may have 3 mutu	ally
perpendicular generators, intersection of a line and a quadric cone	
Tangent lines, tangent plane at a point, condition that a plane may to	uch the
cone, reciprocal cones, intersection of two cones with a common ver	tex

Department: Mathematics Paper: 2A, Abstract Algebra & Real Analysis Class: II BSc Semester: III

Binary operations ,definitions and properties ,Groups-definition and

elementary properties ,finite groups and group composition tables. Subgroups and cyclic subgroups ,permutations ,functions and

permutations, groups of permutations, cycles and cyclic notation.

Practical.

Even and odd permutations ,the alternating groups ,cyclic groups :elementary properties ,the classification of cyclic groups.

Practical.

Subgroups of finite cyclic groups ,isomorphism -definition and elementary properties, Cayley's theorem ,groups of cosets ,applications.

Normal subgroups :factor groups, criteria for the existence of a coset group ,inner automorphism and normal subgroups.

Factor groups and simple groups , homomorphism :definition and elementary properties ,the fundamental theorem of homomorphism ,applications. Practical.

The completeness properties of IR.

Practical.

Applications of the supremum property.

Sequences and series

Sequence and their limits ,limit theorems ,monotonic sequences and the Bolazano – weierstrass theorem.

The cauchy's criterion.

Practical.

Properly divergent sequences.

Introduction to series ,absolute convergence.

Test for absolute convergence.

Practical.

Test for non absolute convergence.

Practical.

Department: MathematicsPaper:2A Solid geometry&Real analysisClass:II BScSemester:III

Coordinates of a point in IR³, Distance between two points, section formula. Angle between two lines ,equation of a plane ,shortest distance from a point to a plane and related results .

Angle between two planes ,plane bisecting the angles between two planes ,joint equation of two planes .

Projection on a plane ,symmetric form of equation of a line changing the equations of a line in to symmetric form .

Angle between a line and a plane, incidence and coplanarity skew lines and the shortest distance between them .

Length of the perpendicular from a point to a line ,equation of sphere ,plane sections ,circle .

Tangent planes and tangent lines ,polar plane and intersection of two spheres, radical plane .

Coaxial systems ,algebraic operations on functions ,Bounded and unbounded functions ,limit of a function .

Algebra of limits ,one sided limits ,right handed and left handed limits .

Limits at infinity and infinite limits ,continuous functions discontinuity of functions .

Algebra of continuous functions ,criteria for continuity .

some properties of continuity of functions at a point

Properties of functions continuous in closed finite intervals, uniform continuity

Derivability of a function ,A necessary condition for the existence of a finite derivative .

Algebra of derivative, Geometrical meaning of the derivative

Meaning of the sign of derivative at a point, Darboux's theorem.

Department: MathematicsPaper:2A Solid Geometry & Real analysisClass:II BScSemester:III

Coordinates of a point in IR³, Distance between two points, section formula.

Angle between two lines ,equation of a plane ,shortest distance from a point to a plane and related results .

Angle between two planes ,plane bisecting the angles between two planes ,joint equation of two planes .

Projection on a plane ,symmetric form of equation of a line changing ,the equations of a line in to symmetric form .

Angle between a line and a plane incidence and coplanarity ,skew lines and the shortest distance between them .

Length of the perpendicular from a point to a line ,equation of sphere ,plane sections ,circle .

Tangent planes and tangent lines ,polar plane , and intersection of two spheres radical plane .

Coaxial systems ,algebraic operations on functions ,Bounded and unbounded functions ,limit of a function .

Algebra of limits ,one sided limits ,right handed and left handed limits .

Limits at infinity and infinite limits ,continuous functions ,discontinuity of functions .

Algebra of continuous functions, criteria for continuity.

some properties of continuity of functions at a point

Properties of functions continuous in closed finite intervals uniform continuity

Derivability of a function ,A necessary condition for the existence of a finite derivative .

Algebra of derivative, Geometrical meaning of the derivative.

Meaning of the sign of derivative at a point

Dorboux's theorem

Department: MathematicsPaper: 2A, Abstract AlgebraClass: II BScSemester: 3

Binary operations, Algebraic structure, semi – group, Monoid.

Group definition and elementary properties, finite and infinite groups, examples

Order of a group, composition tables with examples.

Subgroups : complex definition , multiplication of two complexes , inverse of a complex , subgroup definition , examples .

Criterion for a complex to be a subgroup, criterion for the product of two subgroups to be a subgroup.

Union and intersection of subgroups, cosets and lagrange's theorem : cosets definition, properties of cosets.

Index of a subgroup of a finite group, lagrange's theorem.

Normal subgroups : definition of normal subgroup , proper and improper normal subgroups and Hamilton group .

Criterion subgroup to be a normal subgroup, intersection of two normal subgroups,

Subgroups of index2 is a normal subgroup, simple group, quotient group, criterion for the existence of a quotient group.

Homomorphism : definition of homomorphism , image of homomorphism , elementary properties of homomorphism , isomorphism .

Automorphism definition and elementary properties, kernel of a

homomorphism, fundamental theorem on homomorphism and applications.

Permutations and Cyclic groups : definition of permutation , permutation multiplication , inverse of a permutation .

Cyclic permutations, transposition, even and odd permutations, cayley's theorem.

ADDITIONAL INPUT :

Construction of finite non abelian group , symmetries of geometrical figures , Cyclic groups : definition of cyclic group

Elementary properties, classification of cyclic groups.

Department: Mathematics Paper: 2A, Abstract Algebra

Class: II BSc Semester: 3

Binary operations, Algebraic structure, semi – group, Monoid.

Group definition and elementary properties , finite and infinite groups , examples Order of a group , composition tables with examples .

Subgroups : complex definition , multiplication of two complexes , inverse of a complex , subgroup definition , examples .

Criterion for a complex to be a subgroup, criterion for the product of two subgroups to be a subgroup.

Union and intersection of subgroups, cosets and lagrange's theorem : cosets definition, properties of cosets.

Index of a subgroup of a finite group, lagrange's theorem.

Normal subgroups : definition of normal subgroup , proper and improper normal subgroups and Hamilton group .

Criterion subgroup to be a normal subgroup, intersection of two normal subgroups,

Subgroups of index2 is a normal subgroup, simple group, quotient group, criterion for the existence of a quotient group.

Homomorphism : definition of homomorphism , image of homomorphism , elementary properties of homomorphism , isomorphism .

Automorphism definition and elementary properties, kernel of a

homomorphism, fundamental theorem on homomorphism and applications.

Permutations and Cyclic groups : definition of permutation , permutation multiplication , inverse of a permutation .

Cyclic permutations , transposition , even and odd permutations , cayley's theorem .

ADDITIONAL INPUT :

Construction of finite non abelian group, symmetries of geometrical figures, Cyclic groups : definition of cyclic group

Elementary properties

Classification of cyclic groups

Department: Mathematics Paper: 2A, Abstract Algebra

Class: II BSc Semester: 3

Binary operations, Algebraic structure, semi – group, Monoid.

Group definition and elementary properties , finite and infinite groups , examples Order of a group , composition tables with examples .

Subgroups : complex definition , multiplication of two complexes , inverse of a complex , subgroup definition , examples .

Criterion for a complex to be a subgroup, criterion for the product of two subgroups to be a subgroup.

Union and intersection of subgroups, cosets and lagrange's theorem : cosets definition, properties of cosets.

Index of a subgroup of a finite group, lagrange's theorem.

Normal subgroups : definition of normal subgroup , proper and improper normal subgroups and Hamilton group .

Criterion subgroup to be a normal subgroup, intersection of two normal subgroups,

Subgroups of index2 is a normal subgroup, simple group, quotient group, criterion for the existence of a quotient group.

Homomorphism : definition of homomorphism , image of homomorphism , elementary properties of homomorphism , isomorphism .

Automorphism definition and elementary properties, kernel of a homomorphism, fundamental theorem on homomorphism and applications.

Permutations and Cyclic groups : definition of permutation , permutation multiplication , inverse of a permutation .

Cyclic permutations, transposition, even and odd permutations, cayley's theorem. ADDITIONAL INPUT :

Construction of finite non abelian group, symmetries of geometrical figures, Cyclic groups: definition of cyclic group

Elementary properties, classification of cyclic groups.

DANTULURI NARAYANA RAJU COLLEGE (AUTONOMOUS) (A College with Potential for Excellence)

College with Potential for Excellence,

Bhimavaram, W.G.DIST. A.P.

Academic Year: 2013 – 14.

Department: Mathematics Paper: Abstract Algebra&Real Analysis, IIB Class: II BSc Semester: 4

Definition and basic properties, fields

Integral domains, divisors of zero and cancellation laws, integral domains , the characteristic of a ring .

Practical.

some non-commutative rings, examples

matrices over a field, the real quaternions

Quotient rings and ideals .

Practical.

Homomorphism of rings-definition and elementary properties

Maximal and prime ideals, prime fields .

Practical.

Rings of polynomials-polynomials in an indeterminate form

The evaluation of homomorphism

Continuous functions, combination of continuous functions, continuous functions on intervals .

Practical.

Uniform continuity, the derivative, the mean value theorems

L'Hospital rule, Taylor's theorem,

Riemann integration- Riemann integral

Practical.

Riemann integrable functions

Fundamental theorem

Department: Mathematics Paper: 2B , Abstract Algebra & Real Analysis. Class: II BSc Semester: IV

Rings and elementary properties : Definition and example Divisors of zero and cancellation laws .

Integral domains and fields ,The characteristic of a ring non –commutative rings matrices over a field ,Ideals and homomorphism .

Ideals ,factor rings ,Maximal Ideal and prime Ideals .

Homomorphism of rings ,prime fields ,polynomial rings Definition of polynomial ring .

Mean value theorem,,Role's theorem,Geometrical interpretation of Rolle's theorem.

Increasing and decreasing functions ,monotonic functions Cauchy's mean value theorem ,Generalized mean value theorem .

Taylor's theorem with schlomitch and Roche, Cauchy's Lagranges form of remainders

maclaurin's Infinte series

power series expansions of some standard functions.

Riemann integrability : Introduction ,partitions and Riemann sums, some properties of Darboux sums ,Upper and Lower Riemann integrals .

Riemann integral, another equivalent definition of integrability and integral, Second definition of Riemann integrability.

necessary and sufficient condition for integrability, particular classes of bounded integrable functions .

Integrability of the modulus of a bounded integrable functions definition of

 $\int_{a}^{b} f(x) dx$ if b≤a, inequalities for an integral functions defined by definite integrals.

fundamental theorem of integral calculus, Generalised mean value theorem.

Abel's lemma, second mean value theorem, change of variable in integral, integration by parts.

Department: Mathematics Paper: 2B , Abstract Algebra & Real Analysis. Class: II BSc Semester: IV

Rings and elementary properties : Definition and example ,Divisors of zero and cancellation laws .

Integral domains and fields ,The characteristic of a ring non –commutative rings matrices over a field ,Ideals and homomorphism .

Ideals ,factor rings ,Maximal Ideal and prime Ideals .

Homomorphism of rings ,prime fields ,polynomial rings ,Definition of polynomial ring .

Mean value theorem ,Role's theorem ,Geometrical interpretation of Rolle's theorem .

Increasing and decreasing functions ,monotonic functions ,Cauchy's mean value theorem ,Generalized mean value theorem .

Taylor's theorem with schlomitch and Roche, Cauchy's Lagranges form of remainders ,Cauchy's .

Lagrange's form of remainders, maclaurin's Infinte series

Infinite series .power series expansions of some standard functions .

Riemann integrability : Introduction ,partitions and Riemann sums and some properties of Darboux ,Upper and Lower Riemann integrals .

Riemann integral another equivalent definition of integrability and integral, Second definition of Riemann integrability.

necessary and sufficient condition for integrability particular classes of bounded ,Integrable functions .

Integrability of the modulus of a bounded integrable functions, definition of

 $\int_{a}^{b} f(x) dx$ if b≤a, Inequalities for an integral functions defined by definite integrals.

fundamental theorem of integral calculus, Generalised mean value theorem.

Abel's lemma, second mean value theorem change of variable in integral, integration by parts.

Department: Mathematics	Paper: 2B, Real Analysis	Class: II
BSC Semester: IV	onics to be covered	
Deal Numbers : The algebraic and	lorder properties of ID absolute	value and real
line the completeness properties	of ID	value and real
A null set ions of Supremum properties	OI IK .	
Applications of Supremum proper	ity, Intervals.	
Real sequences . sequences and un	near limit of a sequence and con	vorgent coquence
The cauchy's criterion properly	divergent sequences.	vergent sequence
Monotone sequences necessary a	and sufficient condition for conver	rgence of
monotone sequences limit point	of a sequence sub-sequences and	l Bolzano –
Weierstress theorem .	or a sequence, sub sequences and	Dollano
Cauchy's sequences Cauchy's ger	neral principle .of converges theor	em, series;
Introduction to series.	1 1 5	, ,
Convergence of series, Cauchy's	general principle of convergence	for series, tests
for convergence of series, series of	of non $-$ negative terms .	,
1. P - test	e	
2. Cauchy's nth root test or ro	ot test.	
3. D- Alembert's test or ratio	test.	
4. Alternating series, Leibnitz	test.	
5. Absolute convergence and o	conditional convergence, semi con	nvergence.
Continuity : limits , real valued fu	nctions, boundedness of a function	on, limits of
functions.		
Some extensions of the limit	it concept.	
Infinite limits, limits at infinity.		
continuous functions : continuous	s function, combination of contin	uous function.
Differentiation and mean value the	eorems : The derivability of a fun	ction on an
interval, at a point, derivability a	nd continuity of a function.	
Graphical meaning of the derivati	ve mean value theorems : Role's	theorem .
Lagrange's theorem, cauchy's me	ean value theorem .	
Riemann Integration : Riemann in	tegral, Riemann integral functior	ns, Darboux
theorem .		
Necessary and sufficient for $R - in$	ntegrability properties of integrab	le functions.
Fundamental theorem of integral of	calculus, Integral as a limit of a s	um, Mean value
theorems.	-	

Department: M	Iathematics	Paper: 2B, Real Analysis	Class: II
BSc	Semester: IV		
Real Numbers	: The algebraic and	order properties of IR, absolute	e value and real
line, the comp	leteness properties of	of IR .	
Applications of	f Supremum propert	ty, Intervals.	
Real sequences	s : sequences and the	eir limits .	
Range and Bou	indedness of sequen	ces, limit of a sequence and con	vergent
sequence, The	cauchy's criterion,	properly divergent sequences .	
Monotone sequ	iences, necessary an	nd sufficient condition for conve	rgence of
monotone sequ	ences, limit point c	of a sequence, sub-sequences and	d Bolzano –
Weierstress the	eorem.		
Cauchy's seque	ences Cauchy's gen	eral principle .of converges theory	rem, series;
Introduction to	series.		
Convergence o	f series, Cauchy's g	general principle of convergence	for series, tests
for convergence	e of series, series o	f non – negative terms .	
1. P - test			
2. Cauchy'	s nth root test or roo	ot test.	
3. D- Alem	bert's test or ratio to	est.	
4. Alternat	ing series, Leibnitz	test.	
5. Absolute	e convergence and c	onditional convergence, semi co	nvergence.
Continuity : lin	nits, real valued fur	nctions, boundedness of a function	on , limits of
functions.			
Some extension	ns of the limit conce	ept.	
Infinite limits,	limits at infinity .		
continuous fur	nctions : continuous	function, combination of contin	uous function.
Differentiation	1	The desired little of a few	

Differentiation and mean value theorems : The derivability of a function on an interval , at a point , derivability and continuity of a function.

Graphical meaning of the derivative mean value theorems : Role's theorem . Lagrange's theorem , cauchy's mean value theorem .

Riemann Integration : Riemann integral , Riemann integral functions , Darboux theorem .

Necessary and sufficient for R – integrability properties of integrable functions.

Fundamental theorem of integral calculus, Integral as a limit of a sum, Mean value theorems.

Department: Mathematics	Paper: 2B, Real Analysis	Class: II
BSc Semester: IV		
To	pics to be covered	
Real Numbers : The algebraic and o	order properties of IR, absolute	value and real
line, the completeness properties o	f IR .	
Applications of Supremum property	y, Intervals.	
Real sequences : sequences and the	ir limits .	
Range and Boundedness of sequence	ces, limit of a sequence and con	ivergent sequence
, The cauchy's criterion , properly of	livergent sequences .	
Monotone sequences, necessary an	id sufficient condition for conve	rgence of
monotone sequences, limit point of	f a sequence, sub-sequences and	d Bolzano –
Weierstress theorem .		
Cauchy's sequences Cauchy's gene	ral principle .of converges theor	rem, series;
Introduction to series.		
Convergence of series, Cauchy's g	eneral principle of convergence	for series, tests
for convergence of series, series of	non – negative terms.	
1. P - test		
2. Cauchy's nth root test or roo	t test.	
3. D- Alembert's test or ratio te	st.	
4. Alternating series, Leibnitz to	est.	
5. Absolute convergence and co	onditional convergence, semi co	nvergence.
Continuity : limits , real valu	ed functions, boundedness of a	function, limits
of functions .		
Some extensions of the limit	concept.	
Infinite limits, limits at infinity.		
continuous functions : continuous	function, combination of contin	uous function.
Differentiation and mean value the	orems : The derivability of a fun	iction on an
interval, at a point, derivability an	d continuity of a function.	
Graphical meaning of the derivative	e mean value theorems : Role's	theorem .
Lagrange's theorem , cauchy's mea	in value theorem .	
Riemann Integration : Riemann inte	egral, Riemann integral function	ns , Darboux
theorem .		
Necessary and sufficient for R – int	tegrability properties of integrab	le functions.
Fundamental theorem of integral ca	alculus, Integral as a limit of a s	um, Mean value
theorems.		

Department: Mathematics Paper: Linear Algebra, 3A
Class: III BSC Semester: V
Vector spaces, general properties of vector spaces, n-dimensional vectors,
addition and scalar multiplication of vectors, Internal and external composition.
Vector subspaces, algebra of subspaces ,Linear combination of vectors, linear span
of a set
Practical
linear sum of two subspaces, Linear independence and dependence of vectors.
practical.
Basis of vector space, Finite dimensional vector spaces, dimension of vector
space.
dimension of subspace ,Homomorphism of vector spaces, Isomorphism of vector
spaces, quotient space.
practical.
dimension of quotient space, Linear transformations, properties of linear
transformations, range and null space of linear transformation.
Practical.
Rank and nullity of linear transformations and its applications
Linear transformation as vectors, product of linear transformations, invertible
linear transformations
Linear functional, dual space, dual bases, Annihilators, the adjoint of a linear
transformation
Sylvester's law of nullity, Characteristic values and characteristic vectors.
Practical.
Cayley-Hamilton theorem, Diagonalizable operators.
Practical.
Inner product spaces, Euclidean and unitary spaces, length of a vector
Schwartz inequality, orthoganality, orthonormal set
Complete orthonormal set, orthonormal basis, Gram-schmidt orthogonalization
process, Bessel's inequality.
Practical.
Bessel's inequality, Practical

Department: MathematicsPaper:4A ,Numerical AnalysisClass: III BScSemester: V

Errors in numerical computations, Numbers and their accuracy, Errors and their computation,

Absolute, Relative and percentage errors. A general error formula. Practical.

error in a series approximation,

Solution of algebraic and transcendental equations:

Practical.

Bisection, the method of falsi position.

The iteration method, the Newton – Raphson method.

Generalized Newton -Raphson method , Ramanujan's method Muller's method . Practical

interpolation : forward differences , backward differences ,

central differences, symbolic relations.

Detection of errors by use of D – tables ,differences of polynomial .

Practical.

Newton's forward interpolation formula ,Newton's backward interpolation formula . Practical.

Gauss's central difference formula ,stirling's central difference formula ,

Additional input: Bessel's central difference formula .

Everett's central difference formula, Divided differences and their properties. Practical.

Lagrange's formula, errors in Lagrange's formula.

Derivation of governing equations, end conditions,

Newton's general interpolation, Practical

Department: Mathematics Paper: 4A , Discrete Mathematics Semester: V

Class: III BSc

Sets and operations of sets, Relations and functions.

Some methods of proof.

Practical.

Problem Solving strategies.

Fundamentals of logic.

Logical inference.

Practical.

Methods of proof of an implication, first order logic and other methods of proof.

Practical.

Rules of inference for quantified propositions.

Mathematical induction ,the principle of inclusion-exclusion.

Generating functions of sequences, calculating coefficients of generating functions.

Recurrence relations, solving recurrence relations by substitution. Practical.

Generating functions, the method of characteristic roots.

Practical.

Solutions of inhomogeneous recurrence relations.

Relations and directed graphs, special properties of binary relations. Practical.

Equivalence relations, ordering relations

Practical.

Latice and enumerations

Department: Mathematics Paper: Linear Algebra, 3A Class: III BSC Semester: V Vector spaces, general properties of vector spaces n-dimensional vectors, addition and scalar multiplication of vectors, Internal and external composition Vector subspaces, algebra of subspaces. Practical. Linear combination of vectors, linear span of a set, linear sum of two subspaces Linear independence and dependence of vectors, Basis of vector space. Practical. Finite dimensional vector spaces, dimension of vector space, dimension of subspace Homomorphism of vector spaces, Isomorphism of vector spaces, quotient space, dimension of quotient space. Practical. Linear transformations, properties of linear transformations, range and null space of linear transformation. Practical. Rank and nullity of linear transformations and its applications Linear transformation as vectors, product of linear transformations, invertible linear transformations Singular and non singular transformations, Matrix of a linear transformation, the adjoint of a linear transformation, Sylvester's law of nullity, Characteristic values and characteristic vectors. Practical. Cayley-Hamilton theorem, Diagonalizable operators. Practical. Inner product spaces, Euclidean and unitary spaces, length of a vector Schwartz inequality, orthoganality, orthonormal set. Practical. Complete orthonormal set, orthonormal basis, Gram-schmidt orthogonalization process Bessel's inequality

Department: Mathematics Paper: 4A ,Numerical Analysis.

Class: III BSc Semester: V

Errors in numerical computations.

Practical.

Numbers and their accuracy.

Errors and their computation ,Absolute , Relative and percentage errors. Practical.

A general error formula, error in a series approximation.

Practical.

Solution of algebraic and transcendental equations.

Bisection, the method of falsi position.

The iteration method, the Newton – Raphson method.

Generalized Newton – Raphson method, Ramanujan's method, interpolatrion, forward differences.

Practical.

Backward differences, central differences, symbolic relations. Practical.

Detection of errors by use of D-tables, differences of polynomial.

Newton's forward interpolation formula ,Newton's backward interpolation formula .

Gauss's central difference formula ,stirling's difference formula. Practical.

Divided differences and their properties .

Lagrange's formula, errors in Lagrange's formula.

Derivation of governing equations, end conditions.

Newton's general interpolation.

Practical.

Department: Mathematics Paper: 4A ,Discrete Mathematics.

Class: III BSc Semester: V

Sets and operations of sets. Sets and operations of sets. Relations and functions. Practical. Some methods of proof. Practical. Problem Solving strategies. Fundamentals of logic. Logical inference. Methods of proof of an implication, first order logic and other methods of proof. Practical. Rules of inference for quantified propositions. Mathematical induction ,the principle of inclusion-exclusion. Generating functions of sequences, calculating coefficients of generating functions. Recurrence relations, solving recurrence relations by substitution. Practical. Generating functions, the method of characteristic roots. Practical. Solutions of inhomogeneous recurrence relations. Relations and directed graphs, special properties of binary relations. Practical. Equivalence relations, ordering relations, lattice and enumerations. Practical.

Department: Mathematics	Paper: Linear Algebra, 3A
Class: III BSC Semester: V	7
Topics to	be covered
Vector spaces, general properties of ve	ector spaces
n-dimensional vectors, addition and so	calar multiplication of vectors, Internal
and external composition	
Vector subspaces, algebra of subspace	es
Linear combination of vectors, linear	span of a set, linear sum of two subspaces
Linear independence and dependence	of vectors, Basis of vector space
Finite dimensional vector spaces, dime	ension of vector space, dimension of
subspace	
Homomorphism of vector spaces, Ison	norphism of vector spaces, quotient
space, dimension of quotient space	
Linear transformations, properties of li	near transformations, range and null
space of linear transformation	
Rank and nullity of linear transformat	ions and its applications
Linear transformation as vectors, prod	uct of linear transformations, invertible
linear transformations	
Singular and non singular transformat	ions, Matrix of a linear
transformation, the adjoint of a linear t	ransformation,
Sylvester's law of nullity, Characteris	tic values and characteristic vectors
Cayley-Hamilton theorem, Diagonaliz	vable operators
Inner product spaces, Euclidean and u	nitary spaces, length of a vector
Schwartz inequality, orthoganality, or	thonormal set
Complete orthonormal set, orthonorm	al basis, Gram-schmidt
orthogonalization process, Bessel's in	equality

Department: Mathematics Paper: 4A,Numerical Analysis.

Class: III BSc

Errors in numerical computations.

Numbers and their accuracy.

Errors and their computation ,Absolute , Relative and percentage errors.

A general error formula, error in a series approximation.

Solution of algebraic and transcendental equations.

Semester: V

Bisection, the method of falsi position.

The iteration method, the Newton – Raphson method.

Generalized Newton – Raphson method, Ramnujan's method, interpolatrion, forward differences.

Backward differences, central differences, symbolic relations.

Detection of errors by use of D-tables, differences of polynomial.

Newton's forward interpolation formula ,Newton's backward interpolation formula .

Gauss's central difference formula ,stirling's difference formula.

Divided differences and their properties .

Lagrange's formula, errors in Lagrange's formula.

Derivation of governing equations, end conditions.

Newton's general interpolation.

Department: Mathematics Paper: 4A , Discrete Mathematics

Class: III BSc Semester: V

Sets and operations of sets.

Sets and operations of sets.

Relations and functions.

Some methods of proof.

Problem Solving strategies.

Fundamentals of logic.

Logical inference.

Methods of proof of an implication, first order logic and other methods of proof.

Rules of inference for quantified propositions.

Mathematical induction ,the principle of inclusion-exclusion.

Generating functions of sequences, calculating coefficients of generating functions.

Recurrence relations, solving recurrence relations by substitution.

Generating functions, the method of characteristic roots.

Solutions of inhomogeneous recurrence relations .

Relations and directed graphs, special properties of binary relations.

Equivalence relations, ordering relations, lattice and enumerations.

DANTULURI NARAYANA RAJU COLLEGE (AUTONOMOUS) (A College with Potential for Excellence) Bhimavaram, W.G.DIST. A.P. Annual Curricular Plan for the Academic Year: 2016 – 17.

Department: Mathematics Paper: Linear Algebra, 3A Semester: V

Class: III BSC

Vector spaces, general properties of vector spaces

n-dimensional vectors, addition and scalar multiplication of vectors, Internal and external composition

Vector subspaces, algebra of subspaces

Linear combination of vectors, linear span of a set, linear sum of two subspaces

Linear independence and dependence of vectors, Basis of vector space

Finite dimensional vector spaces, dimension of vector space, dimension of subspace

Homomorphism of vector spaces, Isomorphism of vector spaces, quotient space, dimension of quotient space

Linear transformations, properties of linear transformations, range and null space of linear transformation

Rank and nullity of linear transformations and its applications

Linear transformation as vectors, product of linear transformations, invertible linear transformations

Singular and non singular transformations, Matrix of a linear transformation, the adjoint of a linear transformation,

Sylvester's law of nullity, Characteristic values and characteristic vectors

Cayley-Hamilton theorem, Diagonalizable operators

Inner product spaces, Euclidean and unitary spaces, length of a vector

Schwartz inequality, orthoganality, orthonormal set

Complete orthonormal set, orthonormal basis, Gram-schmidt

orthogonalization process, Bessel's inequality

Department: Mathematics Paper: 4A,Numerical Analysis.

Class: III BSc Semester: V

Errors in numerical computations.

Numbers and their accuracy.

Errors and their computation ,Absolute , Relative and percentage errors.

A general error formula , error in a series approximation.

Solution of algebraic and transcendental equations.

Bisection ,the method of falsi position .

The iteration method, the Newton – Raphson method.

Generalized Newton – Raphson method, Ramnujan's method, interpolatrion, forward differences.

Backward differences, central differences, symbolic relations.

Detection of errors by use of D-tables, differences of polynomial.

Newton's forward interpolation formula ,Newton's backward interpolation formula .

Gauss's central difference formula, stirling's difference formula.

Divided differences and their properties .

Lagrange's formula, errors in Lagrange's formula.

Derivation of governing equations, end conditions.

Newton's general interpolation.

Department: Mathem	atics	Paper: 4A ,Discrete Mathematics
Class: III BSc	Semester: V	
Sets and operations of	f sets.	
Sets and operations of	f sets.	
Relations and functio	ns.	
Some methods of pro	of .	
Problem Solving strat	tegies.	
Fundamentals of logi	с.	
Logical inference.		
Methods of proof of a	an implication, fir	st order logic and other methods of proof.
Rules of inference for	r quantified propo	ositions.
Mathematical inducti	on ,the principle (of inclusion-exclusion.
Generating functions	of sequences, ca	lculating coefficients of generating
functions.		
Recurrence relations	solving recurrence,	e relations by substitution.
Generating functions	, the method of c	haracteristic roots.
Solutions of inhomog	eneous recurrenc	e relations.
Relations and directed	d graphs, special	properties of binary relations.
Equivalence relations	, ordering relatio	ns, lattice and enumerations.

Department: Mathematics Paper: Ring Theory & Vector Calculus, 3A
Class: III BSc Semester: V
Abstract algebra : Introduction, basics
Revision of groups, subgroups, cosets and lagrange's theorem, normal
subgroups ,cyclic groups
Definition of a ring and basic properties, Boolean rings, divisors of zero,
cancellation laws
Integral domains, division ring, field, the characteristic of a ring, the
characteristic of a field, subrings
Ideals, principal ideals, quotient rings, Euclidean rings
Definition of a homorphism, homorphic image, elementary properties of
homomorphism
Kernel of a homomorphism, fundamental theorem of homomorphism
Maximal ideals, prime ideals
Vector differentiation, ordinary derivatives of vectors
Differentiability, gradient, divergence, curl
Formulae involving these operators, vector integration
Line integral, surface integral
Volume integral with examples,
Gauss divergence theorem and applications
Green's theorem and applications
Stoke's theorem
Applications of stoke's theorem

Department: Mathematics Paper: Linear Algebra, 4A
Class: III BSc Semester: V
Vector spaces, General properties of vector spaces, n-dimentional vectors, addition
and scalar multiplication of vectors
Internal and external composition, null space, Vecdtor subspaces, Algebra of
subspaces
Linear sum of two subspaces, linear combination of vectors, linear span
Linear independence and linear dependence of vectors
Basis of vector space, Finite dimensional vector spaces
Basis extension, coordinates
Dimension of a vector space, dimension of a subspace
Quotient space and dimension of quotient space
Linear transformations, linear operators, properties of linear transformations, sum
and product of linear transformations, Algebra of linear operators
Range and null space of linear transformation, Rank and nullity of linear
transformation
Rank-nullity theorem, linear equations
Characteristic roots, characteristic values& vectors of square matrix, cayley-
Hamilton theorem
Innerproduct spaces, Euclidean and unitary spaces, norm of a vector, Schwarz
inequality
Triangle inequality, parallelogram law, orthogonality
Orthonormal set, complete orthonormal set
Gram-schmidt orthogonalisation process
Bessel's inequality, Parseval's identity

DANTULURI NARAYANA RAJU COLLEGE (AUTONOMOUS) (A College with Potential for Excellence)

Bhimavaram, W.G.DIST. A.P.

Academic Year: 2018 – 19.

Department: Mathematics Paper: Ring theory&vector calculus, 3A

Class: III BSc

Semester: V Topics to be covered

Abstract algebra : Introduction, basics

Revision of groups, subgroups, cosets and lagrange's theorem, normal subgroups ,cyclic groups

Definition of a ring and basic properties, Boolean rings, divisors of zero, cancellation laws

Integral domains, division ring, field, the characteristic of a ring, the characteristic of a field, subrings

Ideals, principal ideals, quotient rings, Euclidean rings

Definition of a homorphism, homorphic image, elementary properties of homomorphism

Kernel of a homomorphism, fundamental theorem of homomorphism

Maximal ideals, prime ideals

Vector differentiation, ordinary derivatives of vectors

Differentiability, gradient, divergence, curl

Formulae involving these operators, vector integration

Line integral, surface integral

Volume integral with examples,

Gauss divergence theorem and applications

Green's theorem and applications

Stoke's theorem and applications

Department: Mathematics	Paper: Linear Algebra, 4A
Class: III BSc Set	mester: V
Vector spaces, General prop	perties of vector spaces, n-dimentional
vectors, addition and scalar	multiplication of vectors
Internal and external compo	osition, null space, Vector subspaces, Algebra of
subspaces	
Linear sum of two subspace	es, linear combination of vectors, linear span
Linear independence and li	inear dependence of vectors
Basis of vector space, Finite	e dimensional vector spaces
Basis extension, coordinate	S
Dimension of a vector spac	e, dimension of a subspace
Quotient space and dimension	ion of quotient space
Linear transformations, line	ear operators, properties of linear
transformations, sum and pr	oduct of linear transformations, Algebra of linear
operators	
Range and null space of line	ear transformation, Rank and nullity of linear
transformation	
Rank-nullity theorem, linea	r equations
Characteristic roots, charac	teristic values& vectors of square matrix,
cayley-Hamilton theorem	
Innerproduct spaces, Euclid	lean and unitary spaces, norm of a vector,
Schwarz inequality	
Triangle inequality, parallel	logram law, orthogonality
Orthonormal set, complete	orthonormal set
Gram-schmidt orthogonalis	ation process, Bessel's inequality, Parseval's
identity	

Department: MathematicsPaper: Multiple integrals & Vector Calculus (3B)Class: III BScSemester: VI
Introduction, the concept of a plane curve, Introduction to line integrals, properties
of line integrals, examples
Sufficient condition for the existence of line integral, the area of a subset .
Practical
Introduction to double integrals, Darboux's theorem, necessary and sufficient
condition for integrability, double integral over a rectangle of a limit of sum.
Practical
Problems on double integrals, integration over non rectangular, change of order of
integration and its applications
Fubini's theorem, Jordan's theorem, change of variable in a double integration.
Practical
Introduction to length of the curves, Rectifiability of a curve, property of rectifiable
curves, surface areas.
Practical
Introduction to vector differentiation, derivative of a vector function,
theorems, partial differentiation.
Practical
Differential operator-directional derivative at a point
Gradient of a scalar point function and its applications, divergence of a
vector, solenoidal vector, laplacian operator, curl of a vector
Irrotational vector, problems on divergence and curl of a vector.
Practical
Vector identities, theorems, Introduction to vector integration, definite integrals,
line integrals and its applications.
Practical
Surface integrals, Volume integrals and its applications
Gauss divergence theorem and its applications.
Practical
Green's theorem, Stoke's theorem and its applications

Department: Mathematics Paper: 4B ,Numerical Analysis Class: III BSc Semester: VI

Curve Fitting : Least squares curve fitting procedures ,fitting a straight line ,non linear curve fitting .

Curve fitting by a sumof exponentials ,numerical differentiation , errors in numerical differentiation , maximum and minimum values of a tabulated functions. Practical.

Numerical integration : Trapezoidal rule , simpson's 1/3 rule , simpson's 3/8 rule. Practical.

Boole's rule and weddle's rule, linear systems of equations.

Solution of linear systems – direct methods .

Practical

matrix inversion method, Gauss elimination method.

practical.

method of factorisation ,ill - conditioned linear systems iterative methods practical.

Jacobi's method.

Gauss siedal method .

Numerical solution of ordinary differential equations : Introduction, Solution by Taylor's series.

Practical.

picards method of successive approximations .

Practical.

Euler's method ,modified Euler's method.

Runge – kutta methods .

Predictor-corrector methods .

Milne's method.

Additional input:Revised Euler's method.

Practical.

Department: Mathematics Paper: 4B ,Discrete Mathematics.

Class: III BSc Semester: VI

Basic concepts, isomorphisms and sub graphs.
Trees and their properties.
Practical.
Spanning trees, directed trees.
Practical.
Binary trees .
Planar graphs, Euler's formula.
Practical.
Multi graphs and Euler circuits.
Practical.
Hamiltonian graphs.
Practical.
Chromatic numbers .
the four color problem
Introduction,Boolean algebras, Switching mechanisms.
Practical.
Boolean functions ,Minimization of Boolean functions.
Additional input:
Network flows: graphs as model of flow of commodities.
Flows.
Practical.
Maximal flows and minimal cuts.
Practical

Department: Mathematics Paper: Multiple integrals & Vector Calculus (3B)
Class: III BSc Semester: VI
Introduction, the concept of a plane curve, Introduction to line integrals,
properties of line integrals, examples
Sufficient condition for the existence of line integral, the area of a subset .
Practical.
Introduction to double integrals, Darboux's theorem, necessary and sufficient
condition for integrability, double integral over a rectangle of a limit of sum
Practical.
Problems on double integrals, integration over non rectangular, change of order
of integration and its applications
Fubini's theorem, Jordan's theorem, change of variable in a double integration.
Practical.
Introduction to length of the curves, Rectifiability of a curve, property of
recdtifiable curves, surface areas.
Practical.
Introduction to vector differentiation, derivative of a vector function,
theorems, partial differentiation
Differential operator-directional derivative at a point
Gradient of a scalar point function and its applications, divergence of a
vector, solenoidal vector, laplacian operator, curl of a vector
Irrotational vector, problems on divergence and curl of a vector.
Practical.
Vector identities, theorems, Introduction to vector integration, definite integrals,
line integrals and its applications.
Practical.
Surface integrals, Volume integrals and its applications.
Practical.
Gauss divergence theorem and its applications
Green's theorem, Stoke's theorem and its applications.
Practical.

Department: Mathematics Paper: 4B, Numerical Analysis.

Class: III BSc Semester: VI

Curve Fitting : Least squares curve fitting procedures ,fitting a straight line ,non linear curve fitting .

Curve fitting by a sum of exponentials ,numerical differentiation , errors in numerical differentiation , maximum and minimum values of a tabulated functions.

Practical.

Numerical integration : Trapezoidal rule , simpson's 1/3 rule , simpson's 3/8 rule.

Practical.

Boole's rule and weddle's rule, linear systems of equations.

Solution of linear systems :direct methods .

Practical.

matrix inversion method, Gauss elimination method.

practical.

method of factorisation, ill – conditioned linear systems, iterative methods.

Jacobi's method.

Gauss siedal method ,numerical solution of ordinary differential equations : Introduction

Solution by Taylor's series.

Practical.

Solution by Taylor's series , picards method of successive approximations . Practical.

Euler's method ,modified Euler's method.

Practical.

Runge - kutta methods .

Predictor-corrector methods .

Practical.

Milne's method.

Department: Mathematics Paper: 4B ,Discrete Mathematics.
Class: III BSc Semester: VI
Basic concepts, isomorphisms and subgraphs.
Trees and their properties.
Spanning trees, directed trees.
Practical.
Binary trees .
Practical.
Planar graphs, Euler's formula.
Practical.
Multi graphs and Euler circuits.
Practical.
Hamiltonian graphs.
Practical.
Chromatic numbers .
the four color problem
Introduction,Boolean algebras, Switching mechanisms.
Practical.
Boolean functions, Minimization of Boolean functions.
Practical.
Additional input:
Network flows: graphs as model of flow of commodities.
Flows.
Maximal flows and minimal cuts.
Practical.

Department: MathematicsPaper: Multiple integrals & Vector Calculus(3B)Class: III BScSemester: VI

Introduction, the concept of a plane curve, Introduction to line integrals, properties of line integrals, examples

Sufficient condition for the existence of line integral, the area of a subset of Introduction to double integrals, Darboux's theorem, necessary and sufficient condition for integrability, double integral over a rectangle of a limit of sum

Problems on double integrals, integration over non rectangular, change of order of integration and its applications

Fubini's theorem, Jordan's theorem, change of variable in a double integration Introduction to length of the curves, Rectifiability of a curve, property of recdtifiable curves, surface areas

Introduction to vector differentiation, derivative of a vecdtor function, theorems, partial differentiation

Differential operator-directional derivative at a point

Gradient of a scalar point function and its applications, divergence of a vecddtor, solenoidal vecdtor, laplacian operator, curl of a vecdtor

Irrotational vector, problems on divergence and curl of a vector

Vector identities, theorems, Introduction to vector integration, definite integrals, line integrals and its applications

Surface integrals, Volume integrals and its applications

Gauss divergence theorem and its applications

Green's theorem, Stoke's theorem and its applications

Department: Mathematics Paper: 4B, Numerical Analysis.	
Class: III BSc Semester: VI	
Curve Fitting : Least squares curve fitting procedures ,fitting a straight	
line ,non linear curve fitting .	
Curve fitting by a some of exponentials ,numerical differentiation ,	
errors in numerical differentiation, maximum and minimum values of	
a tabulated functions.	
Numerical integration : Trapezoidal rule , simpson's 1/3 rule ,	
simpson's 3/8 rule.	
Boole's rule and weddle's rule, linear systems of equations.	
Solution of linear systems – direct methods .	
matrix inversion method, Gauss elimination method.	
method of factorisation, ill – conditioned linear systems, iterative	
methods .	
Jacobi's method.	
Gauss siedal method ,numerical solution of ordinary differential	
equations : Introduction	
Solution by Taylor's series.	
Solution by Taylor's series, picards method of successive	
approximations.	
Euler's method ,modified Euler's method.	
Runge – kutta methods .	
Predictor-corrector methods .	
Milne's method.	

Department: Mathematics Paper: 4B ,Discrete Mathematics.

Class: III BSc Semester: VI

Basic concepts, isomorphisms and subgraphs.

Trees and their properties.

Spanning trees, directed trees.

Binary trees.

Planar graphs, Euler's formula.

Multi graphs and Euler circuits.

Hamiltonian graphs.

Chromatic numbers .

the four color problem ,Introduction .

Boolean algebras ,Switching mechanisms.

Boolean functions, Minimization of Boolean functions.

Additional input:

Network flows: graphs as model of flow of commodities.

Flows.

Maximal flows and minimal cuts.

Department: MathematicsPaper: Multiple integrals & Vector Calculus(3B)Class: III BScSemester: VI

Introduction, the concept of a plane curve, Introduction to line integrals, properties of line integrals, examples

Sufficient condition for the existence of line integral, the area of a subset of

Introduction to double integrals, Darboux's theorem, necessary and sufficient condition for integrability, double integral over a rectangle of a limit of sum

Problems on double integrals, integration over non rectangular, change of order of integration and its applications

Fubini's theorem, Jordan's theorem, change of variable in a double integration

Introduction to length of the curves, Rectifiability of a curve, property of recdtifiable curves, surface areas

Introduction to vector differentiation, derivative of a vecdtor function, theorems, partial differentiation

Differential operator-directional derivative at a point

Gradient of a scalar point function and its applications, divergence of a

vector, solenoidal vector, laplacian operator, curl of a vector

Irrotational vector, problems on divergence and curl of a vector

Vector identities, theorems, Introduction to vector integration, definite integrals, line integrals and its applications

Surface integrals, Volume integrals and its applications

Gauss divergence theorem and its applications

Green's theorem, Stoke's theorem and its applications

Department: Mathematics Paper: 4B, Numerical Analysis.

Class: III BSc Semester: VI

Curve Fitting : Least squares curve fitting procedures ,fitting a straight line ,non linear curve fitting .

Curve fitting by a some of exponentials ,numerical differentiation , errors in numerical differentiation , maximum and minimum values of a tabulated functions.

Numerical integration : Trapezoidal rule , simpson's 1/3 rule , simpson's 3/8 rule.

Boole's rule and weddle's rule, linear systems of equations.

Solution of linear systems – direct methods .

matrix inversion method ,Gauss elimination method .

method of factorisation ,ill – conditioned linear systems ,iterative methods

Jacobi's method.

Gauss siedal method ,numerical solution of ordinary differential equations : Introduction

Solution by Taylor's series.

Solution by Taylor's series, picards method of successive approximations.

Euler's method ,modified Euler's method.

Runge – kutta methods .

Predictor-corrector methods .

Milne's method.

Department: Mathematics Paper: 4B ,Discrete Mathematics.

Class: III BSc Semester: VI

Basic concepts, isomorphisms and subgraphs.

Trees and their properties.

Spanning trees, directed trees.

Binary trees.

Planar graphs, Euler's formula.

Multi graphs and Euler circuits.

Hamiltonian graphs.

Chromatic numbers.

the four color problem ,Introduction .

Boolean algebras, Switching mechanisms.

Boolean functions, Minimization of Boolean functions.

Additional input:

Network flows: graphs as model of flow of commodities.

Flows.

Maximal flows and minimal cuts.

Department: Mathematics Paper: 3B, Numerical Analysis

Class: III BSc Semester: V

Bridge Course, Errors in numerical computations

Numbers and their accuracy, Errors and their computation, Absolute, relative and percentage errors

A general error formula, error in a series approximation, Solution of Algebraic and transcendental equations, Bisection method and Regula –falsi method

The iteration method, The Newton-Raphson method, Generalised Newton-Raphson method, Ramanujan method, Muller's method

Interpolation: Forward differences, Backward differences, Central differences

Symbolic relations, Detection of errors by use of D-tables

Differences of a polynomial, Newton's forward interpolation formula

Newton's backward interpolation formula-Examples

Gauss's central difference formulae

Stirling's difference formula,

Bessel' formula

Everett's formula

Divided differences and their properties

Relation between divided differences and forward differences, Backward

differences, central differences

Lagrange's formula

Error in Lagrange's formula, Newton's general interpolation formula

Inverse interpolation

Department: Mathematics Paper: 4B Advanced Numerical Analysis (cluster) Class: III BSc Semester: VI

Curve fitting : least squares curve fitting procedures ,fitting a straight line.

Non linear curve fitting , curve fitting by a sum of exponentials.

Numerical differentiation : Derivatives using Newton's forward difference formula , Newton's backward difference formula .

Derivatives using central difference formula : Stirling's interpolation formula ,Newton's divided difference formula

Maximum and Minimum values of a tabulated functions .

Numerical integration : General quadrature formula , Trapezoidal rule , Simpson's 1/3 – rule .

Simpson's 3/8 – rule, Boole's rule and Weddle's rule.

Euler – Maclaurin formula of summation and quadrature , the Euler transformation .

Solutions of simultaneous linear systems of equations .

Solutions of simultaneous linear systems of equations : solution of linear systems – Direct methods , matrix inversion method , Gaussian elimination methods .

Gauss – Jordan method , method of factorization , solution of tri diagonal systems , iterative methods .

Jacobi's method, Gauss Seidal method

Numerical solution of ordinary differential equations : Solution by Taylor's series , Picard's method of successive approximations .

Euler's method , modified Euler's method , Runge – Kutta second and fourth order methods .

Department: Mathematics Paper: Special functions, 5B,(Cluster)
Class: III BSc Semester: VI
Hermite polynomial: Hermite differential equation, solution of Hermite
equation,
Hermite polynomials, generating functions, other forms for Hermite
polynomials
To find first few Hermite polynomials, orthogonal properties of Hermite
polynomials,
Recurrence formulae for Hermite polynomials, problems
Laguerre polynomials- Lagurre's differential equations, solution of
Laguerre's equation, Laguerre's polynomials ,generating functions
Other forms of laguerre's polynomial, to find first few Laguerre's
polynomials, orthogonal properties of laguerre's polynomials, recurrence
formulae
Associated laguerre equation, Legendre's equation- definition, solution of
legendre's equation, definition of ,general solution of legendre's
equation
To show that is the coefficient of in the expansion of
Orthogonal properties of legendre's equation, recurrence formula
Rodrigue's formula, problems
Bessel's equation-Definition, solution of Bessel's general differential
equation, general solution of Bessel's equation
Integration of Bessel's equation in series for n=0, definition of
Recurrence formula for
Generating function for , Beta and gamma functions- Euler's integrals,
Beta and gamma functions, Elementary properties
Transformations of gamma functions, another form of Beta function
Relation between Beta and gamma functions, other transformations

Department: Mathematics Paper: 3B, Numerical Analysis Class: III BSc Semester: VI

Bridge Course

Errors in Numerical computations, Numbers and their accuracy, Errors and their computation, Absolute, relative and percentage errors

A general error formula, error in a series approximation, Solution of Algebraic and transcendental equations, Bisection method and Regula –falsi method

The iteration method, The Newtonj-Raphson method, Generalised Newtonj-Raphson method, Ramanujan method, Muller's method

Interpolation: Forward differences, Backward differences, Central differences

Symbolic relations, Detection of errors by use of D-tables

Differences of a polynomial, Newton's forward interpolation formula

Newton's backward interpolation formula-Examples

Gauss's central difference formulae

Stirling's difference formula,

Bessel' formula

Everett's formula

Divided differences and their properties

Relation between divided differences and forward differences, Backward differences , central differences

Lagrange's formula, error in Lagrange's formula

Newton's general interpolation formula, Inverse interpolation

Department: Mathematics Paper: 4B Advanced Numerical Analysis (cluster) class: III BSc Semester: VI

Curve fitting : least squares curve fitting procedures ,fitting a straight line.

Non linear curve fitting , curve fitting by a sum of exponentials.

Numerical differentiation : Derivatives using Newton's forward difference formula , Newton's backward difference formula .

Derivatives using central difference formula : Stirling's interpolation formula ,Newton's divided difference formula

Maximum and Minimum values of a tabulated functions .

Numerical integration : General quadrature formula , Trapezoidal rule , Simpson's 1/3 – rule .

Simpson's 3/8 – rule, Boole's rule and Weddle's rule.

 $\operatorname{Euler}-\operatorname{Maclaurin}$ formula of summation and quadrature , the Euler transformation .

Solutions of simultaneous linear systems of equations .

Solutions of simultaneous linear systems of equations : solution of linear systems – Direct methods , matrix inversion method , Gaussian elimination methods .

Gauss – Jordan method , method of factorization , solution of tri diagonal systems , iterative methods .

Jacobi's method, Gauss Seidal method

Numerical solution of ordinary differential equations : Solution by Taylor's series , Picard's method of successive approximations .

Euler's method, modified Euler's method, Runge – Kutta second and fourth order methods.

Department: Mathematics Paper: Special functions, 5B, Cluster
Class: III BSc Semester: VI
Hermite polynomial: Hermite differential equation, solution of Hermite
equation,
Hermite polynomials, generating functions, other forms for Hermite
polynomials
To find first few Hermite polynomials, orthogonal properties of Hermite
polynomials,
Recurrence formulae for Hermite polynomials, problems
Laguerre polynomials- Lagurre's differential equations, solution of Laguerre's
equation, Laguerre's polynomials, generating functions
Other forms of laguerre's polynomial, to find first few Laguerre's
polynomials, orthogonal properties of laguerre's polynomials, recurrence
formulae
Associated laguerre equation, Legendre's equation- definition, solution of
legendre's equation, definition of ,general solution of legendre's
equation
To show that is the coefficient of in the expansion of
Orthogonal properties of legendre's equation, recurrence formula
Rodrigue's formula, problems
Bessel's equation-Definition, solution of Bessel's general differential
equation, general solution of Bessel's equation
Integration of Bessel's equation in series for n=0, definition of
Recurrence formula for
Generating function for , Beta and gamma functions- Euler's integrals, Beta
and gamma functions, Elementary properties
Transformations of gamma functions, another form of Beta function
Relation between Beta and gamma functions, other transformations